趣祝福logo
地图 > 祝福语 > 范文大全 > 分式方程教案 >

分式方程教案集锦七篇

分式方程教案集锦七篇

趣祝福范文大全(编辑 幻想旅行家)每个老师在上课前会带上自己教案课件,因此老师会仔细规划每份教案课件重点难点。教案是促进课堂群体合作的有效途径,怎么样的教案才算是好教案课件?您能在以下资源中找到跟您所需相关的“分式方程教案”资料,让我们一起变得更加有价值!

分式方程教案【篇1】

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

分式方程教案【篇2】

理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的“转化”思想。

培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

一.创设情境,导入新课:

为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20__元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

根据以上信息你能分别求出两次捐款的人数吗?

若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。

根据相等关系列方程为( )。

这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1

所以x=200是原方程的解。

分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.

怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。

本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教案【篇3】

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

一、回顾与整理

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

分式方程教案【篇4】

1-X=-1-2(X-2)

解这个方程,得

X=2

你认为X=2是原方程的根吗?与同伴交流。

教师小结:

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

验根的方法有:代入原方程检验法和代入最简公分母检验法.(1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。(2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。

前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。

想一想:解分式方程一般需要经过哪几个步骤?由学生回答。

(4)教师归纳小结:

解分式方程的步骤:

1在方程的两边都乘以最简公分母,约去分母,化为整式方程

2解这个整式方程

3把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

(5)轻松完成:课堂练习:82页1、2

(6)归纳总结、整理反思

学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。

设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。

(7)课后作业:82页习题3.7的1、2题

教学设计说明:整个教学活动,从学生的实际出发,引导学生通过探索、交流等手段,获得知识,形成技能,发展思维。在教学活动中,我积极地充当教学活动的组织者、引导者、合作者。让学生产生一种渴望学习的冲动,自愿地全身心地投入学习过程,自主学习、自悟学习、自得学习,让学生在言词实践活动中真正“动”起来。变“听”数学为“做”数学。使学生的个性在课堂中得到张扬、能力得到发展。最终实现以下理念追求:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

分式方程教案【篇5】

本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。分式方程概念的学习,为分式方程的解法及运用的学习做了极为必要的铺垫。

2.能力目标:通过列分式方程培养学生分析问题、解决问题的能力;

三、教育理念及教法依据:

采用建构主义教学模式,运用成功教育及赏识教育理念设计教学。

1.情境1.

(出示)有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。

设计发问:(1)你能用自己的语言解释每一个数据的意义吗?

(2)你能尽可能从题目中找到等量关系吗?

②第一块地的产量为9000kg;

③第二块地的产量为15000kg;

④第一块地的单位面积产量比第二块少3000kg;

(3)你还能找到哪些隐含的数量关系?

(4)如何选设未知数?(通常设直接未知数,如建立方程困难则选设间接未知数)

(5)哪些关系可以用来建立代数式?哪一个关系用来建立方程?

(6)如何建立方程?

解:设第一块试验田每公顷产量为xkg,则第二块试验田每公顷的产量是(x+300)kg. 由题意得9000/x=15000/(x+3000).

设计意图:(1)以问题串的形式形成师生之间的对话,推进学生的思维,突破学习的难点;

(2)呈现列方程的通用方法:分析数据——找等量关系——设未知数——建立相关的代数式——建立方程;

(3)如果学生的回答思维跳跃较大,教师采取追问的方式,将思维的关键步骤凸显出来,使基础薄弱的学生也能积极地跟进;

(4)提醒学生:

①通常设一个未知数至少需要建立一个方程,设两个未知数至少需要建立两个方程;

②等量关系或用来列代数式或用来建立方程,不能重复使用;

③学会用代数式思考问题;

④列方程的思想要“深入人心”。

2.情境2.

(出示)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480 km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

组织教学:分成男生、女生两个阵营,就以上问题,一方同学依次发问,另一方依次应答。提问方围绕问题,想问什么就问什么,问清楚问透彻;应答方有问必答。

(2)题中有哪些数量关系?

男生答:路程:普通公路全长600km,高速公路全长480km;

速度关系:客车在高速公路上的.速度比在普通公路上快45km/h;

行程问题中三个量之间的基本关系:速度×时间=路程路程/速度=时间 路程/时间=速度

女生问:如何设未知数?如何建立代数式?如何建立方程?

男生答:解:设客车由高速公路从甲地到乙地需要xh,则由普通公路从甲地到乙地需要2xh,根据题意,得600/x-480/2x=45.

女生追问:哪些数量关系被用来列代数式?哪些关系被用来建立方程?

设计意图:(1)变“师生问答”为“男生、女生的问答”,将问题的分析解决变成一个双方斗智的游戏,一个模拟的思维游戏,易激发学生的学习兴趣;

(2)在问答中不同阵营的学生可以追加发问,可以补充回答,通过问题的解决既培养斗智斗勇的竞争意识,又培养团队合作精神;

(3)教师要做一个好的观察者,适当指导,保证学生思维是活跃的,思维方向是正确的;

(4)同时注意控制教学时间。

3.情境3.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。求两次捐款人数各是多少。

解:设第一次捐款人数为x人,则第二次捐款人数为(x+20)人,

由题意,得4800/x=5000/(x+20).

问(1)以上所列的方程有什么共同特点?

问(2)“分式方程”与“分式”有何不同?“分式方程”与“整式方程”有何不同?

a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.

设计意图:通过新旧概念的比较明确新概念,通过判断强化新概念。

练习1.据联合国《20__年世界投资报告》指出,中国20__年吸收外国投资额达530亿美元,比上一年增加了13%。设20__年我国吸收外国投资额为x亿美元,请你写出x满足的方程。你能写出几个方程?其中哪一个是分式方程?

(2)每位学生至少列出三个方程;

(3)学生独立解题,教师板书学生的答案,供大家彼此借鉴,互相学习。

练习2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好先用人工装运,6h完成了一半任务,后来机械装运和人工装运同时进行,1h完成了后一半任务。如果设单独采用机械装运xh可以完成后一半任务,那么x满足怎样的方程?

教学设计:

(1)本题是工程问题的情境;

(2)学生独立完成,互相交流答案,教师点评。

6.课堂小结:

(1)本节课你有什么收获?还有什么疑问吗?(小组交流,派代表发言)

(2)在双方问答的对决中,哪个阵营思维更活跃,更具合作意识,请表决,并为胜方热烈鼓掌。

分式方程教案【篇6】

一.教学内容分析:

列分式方程解决应用问题比列一次方程(组)要稍微复杂一点,教学时候要引导学生抓住寻找等量关系,恰当选择设未知数,确定主要等量关系,用含未知数的分式或者整式表示未知量等关键环节,细心分析问题中的数量关系。对于常用的数量关系,虽然学生以前大都接触过,但是在本章的教学中仍然要注意复习、总结,并且抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验,解释所获得结果的合理性。

本章教科书呈现了大量由具体问题抽象出数量关系的实例,目的是让学生经历观察、归纳、类比、猜想等思维过程,所以,评价应该首先关注学生在这些具体活动中的投入程度——能否积极主动地参与各种活动;其次看学生在这些活动中的思维发展水平——能否独立思考,能否用数学(语言分式分式方程)表达自己的想法,能否反思自己的思维过程,进而发现新的问题。

教科书设置了丰富的实际例子,这些涉及工业、农业、环保、学生实际、教学本身等方面,评价中应该关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并且用分式、分式方程表示,能否表达自己解决问题的过程,能否获得问题的答案,并且检验、解释结果的合理性。

二.重点和难点

教学重点:引导学生从不同角度寻求等量关系是解决实际问题的关键。

难点:引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性。增强学生应用数学的意识。

三.教学方法

本节课采用:课前预习、课中引导分析、合作探究、自我展示等教学方法。这样可以培养学生的良好学习习惯、语言表达与分析问题的能力、思维的缜密性。

四.教学过程

本节课分四部分进行:情境导入、探究新知、应用、小结。

(一)情境导入。首先,我让学生回顾了分式方程及分式方程的解法、步骤,目的是让学生进一步认识分式方程与整式方程的区别、解法的不同,为后面的学习打下基础。其次,应用几幅图片对学生进行思想教育同时顺利引出新课,目的是让学生了解水资源危机培养他们的良好品质。

(二)新知探究。例1、某市为治理水污染。这一例题只给出了情境没有具体的问题,进而让学生去分析题意及各个量间的关系找出等量关系式。然后提出自己想知道的问题,最后我在学生所提问题中选一问题进行解决。(实际功效是多少?)这样给学生的思考留下了很大的空间,也培养了学生的分析问题解决问题的能力,同时也促进了每个学生的发展。在解决问题过程中多采用了学生间的交流合作、独立完成、互帮互助、上板展示的学习方法。教学时我重点引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性,这样有利于学生养成良好的学习品质。

(三)知识应用。对例一分析解决后选择课本上的例3作为习题这样不仅巩固了新知应用,而且进一步检测了学生的分析、表达、书写等各个方面的能力,增强他们的应用意识。

(四)小结:让学生在组内交流和在班内交流,畅所欲言,这样每个学生都有回顾知识、表现自我的机会;教师补充小结使学生分析、归纳、总结的良好习惯。

五、课堂练习和课后作业

92页做一做作为学生的作业;P94问题解决的EX1—3作为学生课后习题,要求的难度适中,符合学生接受知识的能力和认知能力,可以即使反馈学生对所学知识的理解和把握程度。

六、说板书

我板书了几个等量关系式,让学生板书解题过程,这样有利于把握重点、掌握新知。

分式方程教案【篇7】

教材分析

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

学情分析

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

教学目标

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

教学重点和难点

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

分式方程教案【篇8】

教学目标

(一)知识与技能

理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

(二)过程与方法

通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想。

(三)情感、态度与价值观

培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

教学难点 :探索分式方程产生增根的原因。

教学过程

一.创设情境,导入新课:

为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20xx元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

根据以上信息你能分别求出两次捐款的人数吗?

若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。

根据相等关系列方程为( )。

这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

二.新课学习:

(一).分式方程的定义:

分母中含有未知数的方程叫做分式方程

以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

反馈练习

(二).探索分式方程的解法

1.回顾整式方程的解法

解方程(解上面练习中的第三题)

师生共同回顾:解整式方程的步骤

(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1

2.如何解分式方程呢?

(学生尝试完成,然后集体补充步骤)

解方程:20xx∕X=2150/X+15

解:方程两边同时乘以X(X+15),得

20xx(X+15)=2150X

解这个整式方程,得

x=200

则200+15=215

检验:把x=200代入原方程,

因为左边=10 右边=10

所以左边=右边

所以x=200是原方程的解。

3.归纳解分式方程的步骤

一是去分母,二是解整式方程,三是检验

4.例题解方程:

(生独立完成,师指导)

分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.

师:解分式方程必须进行检验!

[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

[生]最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。

三.应用升华

四.小结

本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

五.布置作业:

本小节课时作业

教学反思

1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教案【篇9】

一、教材分析

本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。分式方程概念的学习,为分式方程的解法及运用的学习做了极为必要的铺垫。

二、教学目标及重点、难点

三维教学目标:

1.知识目标:从实际情境中抽象出分式方程的概念;

2.能力目标:通过列分式方程培养学生分析问题、解决问题的能力;

3.情感目标:培养学生的社会责任感及应用数学的意识。

教学重点:列分式方程

教学难点:列分式方程。

三、教育理念及教法依据:

采用建构主义教学模式,运用成功教育及赏识教育理念设计教学。

四、教学程序

1.情境1.

(出示)有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。

设计发问:(1)你能用自己的语言解释每一个数据的意义吗?

(2)你能尽可能从题目中找到等量关系吗?

答:①两块地的面积相等;

②第一块地的产量为9000kg;

③第二块地的产量为15000kg;

④第一块地的单位面积产量比第二块少3000kg;

(3)你还能找到哪些隐含的数量关系?

答:⑤总产量/总面积=单位面积产量

(4)如何选设未知数?(通常设直接未知数,如建立方程困难则选设间接未知数)

(5)哪些关系可以用来建立代数式?哪一个关系用来建立方程?

(6)如何建立方程?

解:设第一块试验田每公顷产量为xkg,则第二块试验田每公顷的产量是(x+300)kg. 由题意得9000/x=15000/(x+3000).

(教师板书等量关系及所列方程)

设计意图:(1)以问题串的形式形成师生之间的对话,推进学生的思维,突破学习的难点;

(2)呈现列方程的通用方法:分析数据——找等量关系——设未知数——建立相关的代数式——建立方程;

(3)如果学生的回答思维跳跃较大,教师采取追问的方式,将思维的关键步骤凸显出来,使基础薄弱的学生也能积极地跟进;

(4)提醒学生:

①通常设一个未知数至少需要建立一个方程,设两个未知数至少需要建立两个方程;

②等量关系或用来列代数式或用来建立方程,不能重复使用;

③学会用代数式思考问题;

④列方程的思想要“深入人心”。

2.情境2.

(出示)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480 km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

组织教学:分成男生、女生两个阵营,就以上问题,一方同学依次发问,另一方依次应答。提问方围绕问题,想问什么就问什么,问清楚问透彻;应答方有问必答。

如,女生问:(1)请解释题中数据的意义?

(2)题中有哪些数量关系?

男生答:路程:普通公路全长600km,高速公路全长480km;

速度关系:客车在高速公路上的速度比在普通公路上快45km/h;

时间关系:走高速所用时间是走普通公路用时的一半。

行程问题中三个量之间的基本关系:速度×时间=路程路程/速度=时间 路程/时间=速度

女生问:如何设未知数?如何建立代数式?如何建立方程?

男生答:解:设客车由高速公路从甲地到乙地需要xh,则由普通公路从甲地到乙地需要2xh,根据题意,得600/x-480/2x=45.

女生追问:哪些数量关系被用来列代数式?哪些关系被用来建立方程?

男生答(略)

设计意图:(1)变“师生问答”为“男生、女生的问答”,将问题的分析解决变成一个双方斗智的游戏,一个模拟的思维游戏,易激发学生的学习兴趣;

(2)在问答中不同阵营的学生可以追加发问,可以补充回答,通过问题的解决既培养斗智斗勇的竞争意识,又培养团队合作精神;

(3)教师要做一个好的观察者,适当指导,保证学生思维是活跃的,思维方向是正确的;

(4)同时注意控制教学时间。

3.情境3.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。求两次捐款人数各是多少。

组织教学:双方阵营互换角色

解:设第一次捐款人数为x人,则第二次捐款人数为(x+20)人,

由题意,得4800/x=5000/(x+20).

4. 形成概念

问(1)以上所列的方程有什么共同特点?

学生归纳形成概念:分母中含有未知数的方程叫做分式方程。

问(2)“分式方程”与“分式”有何不同?“分式方程”与“整式方程”有何不同?

(3)判断:下列关于x的方程,是分式方程的是?

a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.

设计意图:通过新旧概念的比较明确新概念,通过判断强化新概念。

5.(人人过关)

练习1.据联合国《20xx年世界投资报告》指出,中国20xx年吸收外国投资额达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为x亿美元,请你写出x满足的方程。你能写出几个方程?其中哪一个是分式方程?

教学设计:

(1)突破难点:百分数13%是“比谁增加了13%”?

(2)每位学生至少列出三个方程;

(3)学生独立解题,教师板书学生的答案,供大家彼此借鉴,互相学习。

练习2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好先用人工装运,6h完成了一半任务,后来机械装运和人工装运同时进行,1h完成了后一半任务。如果设单独采用机械装运xh可以完成后一半任务,那么x满足怎样的方程?

教学设计:

(1)本题是工程问题的情境;

(2)学生独立完成,互相交流答案,教师点评。

6.课堂小结:

(1)本节课你有什么收获?还有什么疑问吗?(小组交流,派代表发言)

(2)在双方问答的对决中,哪个阵营思维更活跃,更具合作意识,请表决,并为胜方热烈鼓掌。

分式方程教案【篇10】

各位领导、各位老师:

大家好!

今天我说课的内容是人教八年级数学下册第十六章《分式》第三节第一课时——分式方程.下面我分说教材、说学情、说教法学法、教学过程、教学效果预想五个方面谈谈我对本节课的看法.

一、说教材

1、教材的地位和作用

可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的.它既可看成是分式有关知识在解方程中的应用;也可看成是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程),因此它有着承前启后的作用.同时学习了分式方程后也为解决实际问题拓宽了路子.

2、教学目标:

根据教材的地位、作用,考虑到学生已有的认知结构心理特征,本着学习知识,培养能力,进行教育,养成好的学习习惯的原则,我确定了如下教学目标:

知识和技能目标:

①、理解分式方程的概念、会解分式方程.

②、掌握解分式方程的验根方法.

过程和方法目标:

经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

情感、态度和价值观目标:

①、培养学生乐于探究、合作学习的好习惯.

②、体会探索发现的乐趣,增强学习数学的自信心.

3、教学重点、教学难点

本着新课程标准,在钻研教材的基础上,我确定本节课的重点、难点为:

教学重点:分式方程的解法

教学难点:解分式方程过程中产生增根的原因及如何验根.

二、学情分析

学生是在前面学习分式的意义、分式的混合运算和熟练解一元一次方程的基础上学习本节内容的,同时八年级学生具有丰富的想象力、好奇心和好胜心理.容易开发他们的主观能动性.但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根.

三、教法学法

1、说教法

常言道:教必有法,教无定法.本节内容从实际问题出发引了出分式方程的概念,介绍分式方程的求解方法.再加上数学学科的特点,所以本节课充分利用“教学案”、采用了启发式、引导式教学方法.特别注重"精讲多练",真正体现以学生为主体.上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决.

2、说学法

“授人以鱼,不如授人以渔”.本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动得参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥.

四、说教学过程

1、回顾旧知

师生在和谐的气愤之下共同回忆以下内容:

(1)大家还记得我们以前学过什么方程吗?

(2)你会解一元一次方程吗?例如:

(3)解二元一次方程组的主要思想是什么?

设计意图:通过以上三个问题让学生投入到方程的世界,也为学生能够自己通过知识的迁移突破本节课的重点做一个铺垫。

2、创设情景、导入新课

出示引言中的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?

师生活动:教师提出问题,学生依照第26页的分析,完成填空,根据“两次航行所用时间相等”这一等量关系列出方程.

设计意图:先通过本章引言中的一个行程问题,引导学生从分析入手,列出含未知数的式子表示有关的量,并进一步根据相等关系列出方程,为探索分式方程及分式方程的解法作准备.

3、小组合作、探究新知

(1)方程与以前所学的方程有何不同?什么叫分式方程?

师生活动:教师提出问题,学生思考、议论后在全班交流.

学生归纳出:该方程的特征是分母中含有未知数.

设计意图:通过观察、比较,培养学生的观察问题和语言表达能力.

(2)如何解分式方程?

师生活动:鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生在解刚才的一元一次方程的基础上自然会想到“去分母”来实现这种转变,求出方程的解,并要求学生验根.

设计意图:怎样解分式方程,这是本节的核心问题,也是本节课的重点,本次活动中用“转化”和“类比”的思想,把待解决的问题,通过转化,化归到已经解决或比较容易的问题中去,最终使问题得到解决.从而突破本节课的重点.

(3)解分式方程:

(4)思考:

①上面两个方程中,为什么第一个分式方程去分母后所得整式方程的解就是它的解,而第二个不是呢?

②解分式方程时,去分母后所得整式方程的解是原分式方程的解,也可能不是,这是为什么呢?

③如何进行检验呢?有更简单的方法吗?

师生活动:学生独立解决问题,然后提出自己的看法在小组讨论,在学生讨论期间,教师应参与到学生的数学活动中,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行验根.

设计意图:这一环节是本节课的难点,此时我设置了一个问题串,降低难度,并且此环节的内容可以说是适度.考虑学生的认知水平,关于增根的过多知识点我大胆舍去,只把目标定于了解解分式方程产生增根的原因和掌握验根的方法,再者通过引导学生进行比较、探究,并进行充分的讨论,最后统一认识,用分式的意义及分式的基本性质解释分式方程可能无解的原因,以及验根的方法,从而突破本节课的难点.

(4)精析例题

出示P28例题

师生活动:教师出示题目,学生独立完成,指名2名学生板演.

设计意图:①例题的作用可以培养学生学以致用的能力、严格的解题规范格式,从而养成良好的学习习惯.

②评价时采用生生评价的方式可以提高学生学习的兴趣,活跃课堂气氛,培养学生严谨的数学思维习惯.

(5)归纳总结解分式方程的步骤

师生活动:学生总结,老师补充点评

设计意图:让学生明确解题步骤,有一个清晰的解题思路,并强调转化思想。

4、练习巩固、深化提高

P29的练习

师生活动:教师出示题目,学生独立完成,指4名学生板演,教师强调步骤,特别是检验.

设计意图:及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力.

5、总结反思、纳入系统

(1)通过本节课的学习,

你学会了哪些知识?

(2)通过本节课的学习,

你想告诉同学们注意什么?

(3)通过本节课的学习,

你获得了哪些学习数学的方法?

师生活动:学生个体小结,小组归纳,集体补充.

设计意图:①让学生以反思的形式回忆本节的学习内容与方法,更有利于学生加深对所学知识的印象,有利于培养学生养成良好的数学学习习惯.

②注重学生间的相互合作,培养学生的合作意识、竞争意识,养成“爱提问、敢质疑、富联想、善总结”的好习惯.

6、作业布置

(1)、必做题:P32第1题

(2)、选做题:P32第2题.

设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获.

7、板书设计

16。3分式方程三、创设情境解分式方程二例一

一、回顾旧知四、探究新知

二、分式方程概念解分式方程一归纳例二

设计意图:清晰明朗,利于两个分式方程的对比从而分析出现增根的原因。

五、效果预想

数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式.本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力.在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅能够注重学生的参与意识,而且注重学生对待学习的态度是否积极.课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣.使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程.

以上就是我对本节课的设想,请各位老师提出宝贵意见。

分式方程教案【篇11】

经历从实际问题中建立分式方程模型的过程,从分析分式方程的特点入手,引出解分式方程的基本思路。通过解分式方程讨论得出分式方程验根的必要性。通过例题巩固分式方程的.解法,总结出解分式方程的步骤。

1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。

2.通过观察、思考,归纳分式方程的概念。

3.解分式方程的一般步骤。

1.通过具体例子,独立探索方程的解法,经历和体会解分式方程的必要步骤。

2.进一步体会数学思想中的转化思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。

1.养成自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

2.运用转化的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信心。

1.解分式方程的一般步骤,熟练掌握分式方程的解法。

1.什么叫方程?什么叫方程的解?

使方程两边相等的未知数的值,叫做方程的解。

扩展阅读

分式方程教案实用12篇


考虑到你的需求,趣祝福编辑特意整理了“分式方程教案”,祝你能够通过学习和工作成为更好的自己。新入职的老师需要备好上课会用到的教案课件,每位老师都应该他细设计教案课件。同时还要明白写好教案课件,也能让老师自己知道教学意图。

分式方程教案 篇1

本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。教师在整个的分式方程教学反思中起着决定性的作用,一定要让教师深刻的认识到这一点。从个人的工作经验中做出如下分析:

第一点、更我思考的空间留给学生 问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。

第二点、做好积极指导、引导的工作 保证学生掌握正确知识,和清晰的解题思路。由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。

第三点、对学生出现的错误问题,做出及时交流沟通 及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。

虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的.较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。“信心是成功的一半”,“在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。

分式方程教案 篇2

(一)教学知识点

1.解分式方程的一般步骤。

2.了解解分式方程验根的必要性。

(二)能力训练要求

1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤。

2.使学生进一步了解数学思想中的"转化"思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。

(三)情感与价值观要求

1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

2.运用"转化"的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信。

教学重点

1.解分式方程的一般步骤,熟练掌握分式方程的解决。

2.明确解分式方程验根的必要性。

教学难点

明确分式方程验根的必要性。

教学方法

探索发现法

学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性。

教具准备

投影片四张

第一张:例1、例2,(记作§3.4.2 A)

第二张:议一议,(记作§3.4.2 B)

第三张:想一想,(记作§3.4.2 C)

第四张:补充练习,(记作§3.4.2 D)。

教学过程

Ⅰ。提出问题,引入新课

在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型--分式方程。但要使问题得到真正的解决,则必须设法解出所列的分式方程。

这节课,我们就来学习分式方程的解法。我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法。

解方程 + =2-

(1)去分母,方程两边同乘以分母的最小公倍数6,得3(3x-1)+2(5x+2)=6×2-(4x-2)。

(2)去括号,得9x-3+10x+4=12-4x+2,

(3)移项,得9x+10x+4x=12+2+3-4,

(4)合并同类项,得23x=13,

(5)使x的系数化为1,两边同除以23,x= .

Ⅱ。讲解新课,探索分式方程的解法

刚才我们一同回忆了一元一次方程的解法步骤。下面我们来看一个分式方程。(出示投影片§3.4.2 A)

解方程: = . (1)

解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?

同学们说他的想法可取吗?

可取。

同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢?

乘以分式方程中所有分母的公分母。

解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单。解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单。

我觉得这两位同学的想法都非常好。那么这个分式方程的最简公分母是什么呢?

x(x-2)。

方程两边同乘以x(x-2),得x(x-2)· =x(x-2)· ,

化简,得x=3(x-2)。 (2)

我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程。

再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x-6(去括号)

2x=6(移项,合并同类项)。

x=3(x的系数化为1)。

x=3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论。

(教师可参与到学生的讨论中,倾听学生的说法)

x=3是由一元一次方程x=3(x-2) (2)解出来的,x=3一定是方程(2)的解。但是不是原分式方程(1)的解,需要检验。把x=3代入方程(1)的左边= =1,右边= =1,左边=右边,所以x=3是方程(1)的解。

同学们表现得都很棒!相信同学们也能用同样的方法解出例2.

解方程: - =4

(由学生在练习本上试着完成,然后再共同解答)

解:方程两边同乘以2x,得

600-480=8x

解这个方程,得x=15

检验:将x=15代入原方程,得

左边=4,右边=4,左边=右边,所以x=15是原方程的根。

很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯。

我这里还有一个题,我们再来一起解决一下(出示投影片 §3.4.2 B)(先隐藏小亮的解法)

议一议

解方程 = -2.

(可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析)

我们来看小亮同学的解法: = -2

解:方程两边同乘以x-3,得2-x=-1-2(x-3)

解这个方程,得x=3.

小亮解完没检验x=3是不是原方程的解。

检验的结果如何呢?

把x=3代入原方程中,使方程的分母x-3和3-x都为零,即x=3时,方程中的分式无意义,因此x=3不是原方程的根。

它是去分母后得到的整式方程的根吗?

x=3是去分母后的整式方程的根。

为什么x=3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论。

(教师可参与到学生的讨论中,倾听同学们的想法)

在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程。如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了。

很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根。

在把分式方程转化为整式方程的过程中会产生增根。那么,是不是就不要这样解?或采用什么方法补救?

还是要把分式方程转化成整式方程来解。解出整式方程的解后可用检验的方法看是不是原方程的解。

怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的。因此最简单的检验方法是:把整式方程的根代入最简公分母。若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根。是增根,必舍去。

在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根。但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验。小亮就犯了没有检验的错误。

Ⅲ。应用,升华

1.解方程:

(1) = ;(2) + =2.

先总结解分式方程的几个步骤,然后解题。

解:(1) =

去分母,方程两边同乘以x(x-1),得

3x=4(x-1)

解这个方程,得x=4

检验:把x=4代入x(x-1)=4×3=12≠0,

所以原方程的根为x=4.

(2) + =2

去分母,方程两边同乘以(2x-1),得

10-5=2(2x-1)

解这个方程,得x=

检验:把x= 代入原方程分母2x-1=2× -1= ≠0.

所以原方程的根为x= .

2.回顾,总结

出示投影片(§3.4.2 C)

想一想

解分式方程一般需要经过哪几个步骤?

同学们可根据例题和练习题的步骤,讨论总结。

解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;

(2)解这个整式方程;

(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去。使最简公分母不为零的根才是原方程的根。

3.补充练习

出示投影片(§3.4.2 D)

解分式方程:

(1) = ;

(2) = (a,h常数)

强调解分式方程的三个步骤:一去分母;二解整式方程;三验根。

解:(1)去分母,方程两边同时乘以x(x+3000),得9000(x+3000)=15000x

解这个整式方程,得x=4500

检验:把x=4500代入x(x+3000)≠0.

所以原方程的根为4500

(2) = (a,h是常数且都大于零)

去分母,方程两边同乘以2x(a-x),得

h(a-x)=2ax

解整式方程,得x= (2a+h≠0)

检验:把x= 代入原方程中,最简公分母2x(a-x)≠0,所以原方程的根为

x= .

Ⅳ。课时小结

同学们这节课的表现很活跃,一定收获不小。

我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可。

我明白了分式方程转化为整式方程为什么会产生增根。

我又一次体验到了"转化"在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么"完美",必须经过检验,反思"转化"过程。

……

Ⅴ。课后作业

习题3.7

分式方程教案 篇3

教材分析

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

学情分析

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

教学目标

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

教学重点和难点

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

分式方程教案 篇4

理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的“转化”思想。

培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

一.创设情境,导入新课:

为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20__元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

根据以上信息你能分别求出两次捐款的人数吗?

若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。

根据相等关系列方程为( )。

这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1

所以x=200是原方程的解。

分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.

怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。

本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教案 篇5

《分式方程教学》教学设计

《分式方程教学》是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享《分式方程教学》教学设计,希望大家在学习中得到提高。

一、教学内容分析:本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

二、学情分析:在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。

三、教学目标:

1、明确什么是分式方程?会区分整式方程与分式方程。

2、会解可化为一元一次方程的分式方程。

3、知道分式方程产生增根的原因,并学会如何验根。

四、教学重点:分式方程的解法。

教学难点:理解分式方程可能产生增根的原因。

五、教学流程

1、忆一忆

(1)什么叫方程?什么叫方程的解?

(2)什么叫分式?

(3)结合具体例子说出解一元一次方程的步骤。

设计意图:让学生由旧知识的回忆自然引出新知识便于学生理解接受。

2x-(x-1)/3=6 3x/4+(2x+1)/3=0

2、猜一猜

板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。

设计意图:采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。

3、辨一辨

判断下列方程是不是分式方程,并说出为什么?

1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2

2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1

指出:分式方程与整式方程的区别(分母中含不含未知数)

设计意图:学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。 (x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。

4、想一想

提出该如何解方程呢?让学生讨论后得出:

通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。

设计意图:让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。

5、试一试

(1)80/(x+5) (2)1/(x-5)=10/

方程两边同乘以 x(x+5)得: 方程两边同乘以(x+5)(x-5)得:

80x=60(x+5) x+5=10

80x=60x+300 x=5

20x=300

x=15

提醒学生检验,对比两个方程发现问题。

设计意图:通过提醒学生检验,让学生自己发现问题。从而自然引出话题。

6、议一议

分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。

7、说一说

老师帮忙总结出解分式方程的一般步骤:

1、程两边都乘最简公分母,约去分母,化为整式方程。

2、解这个整式方程。

3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。

可简单记作:一化二解三检验。

设计意图:让学生对所学知识上升到一个理论高度。

8、做一做

解方程: (1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)

体验解分式方程的完整过程。

以上就是数学网小编分享《分式方程教学》教学设计的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

分式方程教案 篇6

一、教材分析

本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。分式方程概念的学习,为分式方程的解法及运用的学习做了极为必要的铺垫。

二、教学目标及重点、难点

三维教学目标:

1.知识目标:从实际情境中抽象出分式方程的概念;

2.能力目标:通过列分式方程培养学生分析问题、解决问题的能力;

3.情感目标:培养学生的社会责任感及应用数学的意识。

教学重点:列分式方程

教学难点:列分式方程。

三、教育理念及教法依据:

采用建构主义教学模式,运用成功教育及赏识教育理念设计教学。

四、教学程序

1.情境1.

(出示)有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。

设计发问:(1)你能用自己的语言解释每一个数据的意义吗?

(2)你能尽可能从题目中找到等量关系吗?

答:①两块地的面积相等;

②第一块地的产量为9000kg;

③第二块地的产量为15000kg;

④第一块地的单位面积产量比第二块少3000kg;

(3)你还能找到哪些隐含的数量关系?

答:⑤总产量/总面积=单位面积产量

(4)如何选设未知数?(通常设直接未知数,如建立方程困难则选设间接未知数)

(5)哪些关系可以用来建立代数式?哪一个关系用来建立方程?

(6)如何建立方程?

解:设第一块试验田每公顷产量为xkg,则第二块试验田每公顷的产量是(x+300)kg. 由题意得9000/x=15000/(x+3000).

(教师板书等量关系及所列方程)

设计意图:(1)以问题串的形式形成师生之间的对话,推进学生的思维,突破学习的难点;

(2)呈现列方程的通用方法:分析数据——找等量关系——设未知数——建立相关的代数式——建立方程;

(3)如果学生的回答思维跳跃较大,教师采取追问的方式,将思维的关键步骤凸显出来,使基础薄弱的学生也能积极地跟进;

(4)提醒学生:

①通常设一个未知数至少需要建立一个方程,设两个未知数至少需要建立两个方程;

②等量关系或用来列代数式或用来建立方程,不能重复使用;

③学会用代数式思考问题;

④列方程的思想要“深入人心”。

2.情境2.

(出示)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480 km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

组织教学:分成男生、女生两个阵营,就以上问题,一方同学依次发问,另一方依次应答。提问方围绕问题,想问什么就问什么,问清楚问透彻;应答方有问必答。

如,女生问:(1)请解释题中数据的意义?

(2)题中有哪些数量关系?

男生答:路程:普通公路全长600km,高速公路全长480km;

速度关系:客车在高速公路上的速度比在普通公路上快45km/h;

时间关系:走高速所用时间是走普通公路用时的一半。

行程问题中三个量之间的基本关系:速度×时间=路程路程/速度=时间 路程/时间=速度

女生问:如何设未知数?如何建立代数式?如何建立方程?

男生答:解:设客车由高速公路从甲地到乙地需要xh,则由普通公路从甲地到乙地需要2xh,根据题意,得600/x-480/2x=45.

女生追问:哪些数量关系被用来列代数式?哪些关系被用来建立方程?

男生答(略)

设计意图:(1)变“师生问答”为“男生、女生的问答”,将问题的分析解决变成一个双方斗智的游戏,一个模拟的思维游戏,易激发学生的学习兴趣;

(2)在问答中不同阵营的学生可以追加发问,可以补充回答,通过问题的解决既培养斗智斗勇的竞争意识,又培养团队合作精神;

(3)教师要做一个好的观察者,适当指导,保证学生思维是活跃的,思维方向是正确的;

(4)同时注意控制教学时间。

3.情境3.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。求两次捐款人数各是多少。

组织教学:双方阵营互换角色

解:设第一次捐款人数为x人,则第二次捐款人数为(x+20)人,

由题意,得4800/x=5000/(x+20).

4. 形成概念

问(1)以上所列的方程有什么共同特点?

学生归纳形成概念:分母中含有未知数的方程叫做分式方程。

问(2)“分式方程”与“分式”有何不同?“分式方程”与“整式方程”有何不同?

(3)判断:下列关于x的方程,是分式方程的是?

a.(x-1)/3a=2x;b.(m+n)/x=2+(3+n)/x;c.(2+x)/5=3+(3+x/6;d.x/a-a/b=b/a-x/b.

设计意图:通过新旧概念的比较明确新概念,通过判断强化新概念。

5.(人人过关)

练习1.据联合国《20xx年世界投资报告》指出,中国20xx年吸收外国投资额达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为x亿美元,请你写出x满足的方程。你能写出几个方程?其中哪一个是分式方程?

教学设计:

(1)突破难点:百分数13%是“比谁增加了13%”?

(2)每位学生至少列出三个方程;

(3)学生独立解题,教师板书学生的答案,供大家彼此借鉴,互相学习。

练习2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好先用人工装运,6h完成了一半任务,后来机械装运和人工装运同时进行,1h完成了后一半任务。如果设单独采用机械装运xh可以完成后一半任务,那么x满足怎样的方程?

教学设计:

(1)本题是工程问题的情境;

(2)学生独立完成,互相交流答案,教师点评。

6.课堂小结:

(1)本节课你有什么收获?还有什么疑问吗?(小组交流,派代表发言)

(2)在双方问答的对决中,哪个阵营思维更活跃,更具合作意识,请表决,并为胜方热烈鼓掌。

分式方程教案 篇7

1.经历在实际问题中运用分式方程的过程,了解分式方程的意义,体会分式方程的模型思想.

2.会解可化为一元一次方程的分式方程.

3.了解分式方程增根产生的原因,会检验分式方程的根.

4.通过学习分式方程的解法,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,体会数学中的转化思想.

重点:

(1)可化为一元一次方程的分式方程的解法.

(2)分式方程转化为整式方程的方法及其中的转化思想.

1、什么叫方程?什么叫方程的解?

2、阅读课本P76页“交流与发现”,完成课本上的.填空。并思考所列方程有怎样的特点?

2、阅读课本P77—78例1、例2并思考:

(1)与解一元一次方程有什么异同点?解分式方程必需要.

(2)总结解分式方程的步骤:

3、自学课本P78—79页例3、例4,进一步熟练解分式方程的步骤.

分式方程教案 篇8

教学目标

1. 理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

3. 鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略。

教学重点及难点

1、 用直接开平方法解一元二次方程;

2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

教学过程设计

一、情景引入,理解方法

看一看:特殊奥林匹克运动会的会标

想一想:

在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

解:由题意得: x2=144

根据平方根的意义得:x=± 12

∴原方程的解是:x1=12 , x2=-12

∵边长不能为负数

∴x=12

了解方法:

上述解方程的方法叫做直接开平方法。通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法。

【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括。通过两个阶段联系后的探究意在培养学生探究一般规律的能力。

第三阶段:怎样解方程(1+x)2=144?

请四人学习小组共同研究,并给出一个解题过程。可以参考课本或其他资料。小组长负责清楚的记录解题过程。

第四阶段:众人齐心当考官!

请各四人小组试着编一个类似于(x+1)2=144 这样能用直接开平方法解的一元二次方程。

1、分析学生所编的方程。

2、从学生的编题中挑出一个方程给学生练习。

3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

4(x+1)2-144=0

归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。

【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想。

三、巩固方法,提高能力

请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

⑴  x2=3              ⑵  3t2-t=0

⑶  3y2=27            ⑷  (y-1)2-4=0

⑸  (2x+3)2=6         ⑹  x2=36x

四、自主小结

今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

分式方程教案 篇9

大家好!

(一)教材分析:(人教版)数学八年级下册第十六章:《分式方程》第一课时本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

(二)、教学目标:

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

(三)教学重点:解分式方程的基本思路和解法。

(四)教学难点:理解分式方程可能产生增根的原因。

(五)学情分析:《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:

1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。

2、探究合作学习。学生互助下进行学习。

(六)教学方法:教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学在师生平等的交流中评价学习。伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,不能用媒体技术替代应有的板书。

(七)、教学过程:

1、复习巩固:大约三分钟

2、讲授新课:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。大约10分钟

活动2:总结定义,探究解法

使学生能从整体上把握数、式、方程及它们之间的联系与区别;及原来学过的方程解法,通过合作探究分式方程(板书)

例1:解方程

23x3=和例2解方程-1=的解

x1x3x(x1)(x2)法,得到解分式方程的步骤

(1)找最简公分母,方程两边乘最简公分母把分式方程转化为整式方程,

(2)解整式方程。

(3)检验,作答。培养学生的探究能力,教师总结方程解法,增强利用类比转化思想解决实际问题的能力及合作的意识。大约15分钟。

活动3:通过学生练习后老师讲评,讲练结合,分析增根,练习题看课件(大约20分钟)

活动4:小节和布置作业,深化巩固(略),大约2分钟

教学思考:在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。因此,同时还要注意老师要深入学生的讨论中,帮助他们得到解分式方程的方法,学生可能出现

(1)不懂的找公分母

(2)容易漏乘

(3)为什么产生增跟和解决增根的检验问题

我的说课完毕,谢谢!

分式方程教案 篇10

第五章 分式与分式方程

4.分式方程

(三)

总体说明

本节是分式方程的第4小节,共三个课时,这是第三课时,本节课主要让学生经历“实际问题——分式方程模型——求解——解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识.教学中设置丰富的实例,关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并用分式方程表示,能否表达自己解决问题的过程.

一、学生起点分析

学生的知识技能基础:前两节课,学生认识了分式方程这样的数学模型,并且学会解分式方程,为本节课用分式方程解决生活中实际问题打下了基础.学生活动经验基础:在本节第一课时学生已经历用分式方程来刻画现实世界问题的过程,也经历了探索解分式方程的过程,获得了一些数学活动经验和体验,同时在以前学习了列一元一次方程、二元一次方程组解应用题,为本节分式方程的应用打下了基础.

二、教学任务分析

学生在学习了分式方程以及分式方程的解法并能熟练地解方程之后,如何将这些技能应用于现实生活当中,也就是将生活中某些问题模型化,本节课安排了《分式方程》的第三课时,旨在培养学生的应用意识和解决实际问题的能力,

本节课的具体教学目标为:

1.通过日常生活中的情境创设,经历探索分式方程应用的过程,会检验根的合理性; 2.经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识. 3.通过创设贴近学生生活实际的现实情境,增强学生的应用意识,培养学生对生活的热爱.

三、教学过程分析

本节课设计了6个教学环节:复习回顾——探究新知——小试牛刀——感悟升华——巩固练习——自主小结.

第一环节 复习回顾 活动内容:

1.解分式方程的一般步骤: 2.解方程 x?14?2?1 x?1x?13.列一元一次方程解应用题的一般步骤分哪几步?

活动目的:回顾上节课知识,检查学生掌握情况,复习列一元一次方程解应用题的一般步骤,引出新问题.注意事项:注意学生解分式方程的书写规范,引导学生回忆程解应用题的一般步骤,以及每一步应注意的问题.第二环节 探究新知 活动内容:

例1.某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为万元,第二年为万元.(1)你能找出这一情境的等量关系吗? (2)根据这一情境,你能提出哪些问题?

(3)你能利用方程求出这两年每间房屋的租金各是多少吗?

活动目的:引导学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.

注意事项:引导学生按“审---设---列---解---验---答”的步骤解决问题.第三环节 小试牛刀 活动内容:

1例2.某市从今年1月1日起调整居民用水价格, 每立方米水费上涨.小丽家去

3年12月份的水费是 15 元,而今7月份的水费则是30 元.已知小丽家今年7月份的用水量比去年12月份的用水量多5m3 ,求该市今年居民用水的价格.

活动目的:引导学生从不同角度寻求等量关系,发展学生分析问题、解决问题的能力,培养学生的应用意识

注意事项:引导学生按“审---设---列---解---验---答”的步骤解决问题.强调验根的必要性.

第四环节 感悟升华 活动内容:

列分式方程解应用题的一般步骤是什么?

活动目的:使学生明确列分式方程解应用题的一般步骤,及每一步应注意的问题.注意事项:让学生类比列一元一次方程解应用题的一般步骤总结出列分式方程解应用题的一般步骤.强调两次验根的重要性.第五环节 巩固练习 活动内容:

1.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少1 本.这种科普书和这种文学书的价格各是多少?

2.某商店销售一批服装,每件售价150元,可获利25%。求这种服装的成本.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米? 活动目的:使学生体会丰富的实例,巩固用分式方程解决实际问题的技巧.

注意事项:要求学生按“审---设---列---解---验---答”的步骤解决问题.强调验根的必要性.

第五环节 自我小结 活动内容: 1.内容小结

今天这节课大家有什么收获?你学到了哪些知识? 2.方法归纳

本节课的学习过程中,你有什么感想?

活动目的:通过学生的回顾与反思,强化学生对利用列分式方程解应用题的理解,发展学生的观察能力和逆向思维能力.

注意事项:引导学生回顾自己的学习过程,畅所欲言,只要有道理教师就应给予肯定,同时提高学生语言组织能力和反思概括能力.

课后作业:完成课本习题

四、教学设计反思

本节课循序渐进,合理设计教学问题系列,有效组织教学活动,既发挥教师的主导作用,又体现学生的主体地位,较好地完成了教学目标.教学中应结合具体的数学内容采用想“问题情境-建立模型-解释、应用与拓展”的模式展开,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心.在教学形式上采用学生口述、互评等多种方法,激活学生的思维,营造良好的课堂氛围.

分式方程教案 篇11

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

一、回顾与整理

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

分式方程教案 篇12

分式方程

八一中学 范文浩

教学目标

1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;

2、经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识。

3、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。 教学重点:分式方程的解法。

教学难点:理解增根的概念,理解解分式方程要验根。 教学过程:

一、复习旧知

1、找错误,解方程:

2x?110x?12x?1???1364

解:去分母,得:

4(2x-1)-2(10x+1)=3(2x+1)-1 去括号,得:

8x-4-20x+1=6x+3-2 移项,得:

8x-20x-6x=3-2-4+1 合并同类项,得: -18x=-2 把系数化为1,得:

x??19

2、甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用的时间与乙做6个所用时间相等.求甲、乙每小时各做多少个? 解:设甲每小时做x个,则乙每小时做(x-2)个,

根据题意,

师:这是什么方程?如何求解呢?激发学生的求知欲

二、引入课题

1、了解分式方程的概念

2、解上题方程:两边同时乘以最简公分母x(x-2) 整理,得10x-20=6x,∴x=5 把x=5代入上述分式方程检验:左边=2 右边=2 左边=右边 ∴ x=5是所列方程的根.

答:甲每小时做5个,乙每小时做3个。

三.例题教学

1、解分式方程:

分析:最简公分母为(x-3),去分母化为整式方程解,最后验根。 解:去分母,方程两边同时乘以(x-3),得1+2(x-3)=4-x,

解这个方程,得3x=9, ∴x=3。

检验:当x=3代入原方程左边与右边都无意义.(设疑:这意味着什么?解出的x=3叫做原方程的什么?解分式方程一定需要什么?激发学生求知欲。引出增根的概念和解分式方程必须检验。)

∴x=3是原方程的增根,∴原方程无实数根。 四.议一议:

1、分式方程产生增根的原因。

去分母时我们在方程的两边同乘了一个可能使分母为零的整式。增根是所得整式方程的根,但不是原分式方程的根。

2、解分式方程一般需要经过哪几个步骤?

(1)去分母:将分式方程的分母因式分解,找出最简公分母,方程两边同乘以各分母的最简公分母,将分式方程转化为整式方程。

(2)解整式方程.

(3)检 验: 为了检验方便,可把整式方程的根分别代入最简公分母,如果使最简公分母为0,则这个根叫分式方程的增根,必须舍去.如果使最简公分母不为0,则这个根是原分式方程的根。注意:增根是所得整式方程的根,但不是原分式方程的根。

(4)写出方程的解。

五、.随堂练习

1、解方程:(1)

34? x?1xx5??4 (2)2x?33?2x

2、课本p104练习第一题

六、学习小结:

通过本节课的学习,你学到了哪些知识?让学生自我总结,加深对新知的理解。

七、作业:

课本p105习题第三题

式与方程教案八篇


经过多次筛选“式与方程教案”入选趣祝福的编辑心目中最好的文章之一,希望本文能够解决您所面临的问题。教案课件是每个老师工作中上课需要准备的东西,每天老师要有责任写好每份教案课件。教案是教师专业素养的展示窗口。

式与方程教案 篇1

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

式与方程教案 篇2

(1)知道用字母表示数和用方程表示数量关系的优越性,会用 字母和含未知数的式子表示数和常见的数量关系。

(2)认识等式和方程,理解等式的性质和方程的解法。初步学会根据字母的取值求含有字母的式子的值,比较熟练地解答含有一个或两个未知数的方程。

(3)研究简单的情景关系和数形联系,明确含字母的式子、等量及等量关系的意义。建构含字母的式子、等式和方程的数学模型,探究等式的特性和方程的特点。

(4)感受用字母表示数和构建方程在生活中的应用价值,强化应用意识,培养分析能力和归纳概括能力。

(5)学会按时间发生的基本顺序进行数量关系的提取和思维模型的加工,将生活事理关系与数学逻辑思维有机地结合。

(6)用方程的基本思想解决简单的实际问题。

(7)体会方程在数学史和人类发展史上的意义,进一步增强热爱数学的热情。

方程在小学阶段的学习,由于小学生的认识范围有限,传统的教科书都采用的是用四则运算的基本关系和几种常见应用题的数量关系作为解题的基础和列方程的基础。这种处理方法,学生能够很好地掌握和运用。但是,把它放在整个数学领域,就有一些问题。主要是传统小学教科书中的方程从解答依据到列方程的思路,都与中学的教科书内容不一致,学生到初中还要重新学习解方程和列方程的知识和技能。本教科书采用新的理念,突破传统观念,既遵循四则计算的意义列、解方程,以便适应小学生的认知基础,又用方程核心思想——等量关系来构建数学模型,先学习等量与等式,讨论出等式的性质,再学习方程与方程的解法,为第三学段的方程学习打好基础。

方程思想在现实中是普遍的,但却难以直接与学生的生活联系起来,因为人们习惯于运用已知条件构建数学模型。而方程思想不是从局部入手思考问题的,而是从宏观角度把整个事件的存在因素综合考虑的,找出各因素之间存在的等量关系,构建数学模型。

本教科书,首先从生活素材排演云南佤族的《木鼓舞》的直观现象引入等量与关系,再从已购回的若干物品问某一个物品重量的方式引入方程。同时,在后续的学习和练习的设计中,也是尽量采用现实生活素材,让学生真正把数学与生活联系起来,感受数学的价值。

方程的核心思想就是构建等量关系的数学模型。这种数学模型的组合要素就是生成事件的基本要素。比如:第91页,小学生排演舞蹈,男生、女生与演员总数的关系是一个学生熟悉的而且又很好理解的等量关系模型。其基本思考的思路是:A=A1+A2。教科书在其它类似的问题和问题解决部分的题目呈现时,尽量突出这种思想。

本教科书通过生活实例引入方程,让学生从情景到数学模型更加体会到数学的应用价值。特别是文艺演出、西气东输、唐卡艺术、商品买卖、植树育林、退耕还草和野生动物保护等多层面、多角度、多行业的实例呈现,显示出方程运用的巨大空间,为学生学习方程起到明显的激励作用。

教科书中每节内容的编写结构大多数是:正文、课堂活动、练习。正文呈现教学内容,体现具体目标要求,课堂活动是师生互动,建立教与学的双边活动的有效途径。通过活动使学生完成对知识的自主建构和理解。练习是为学生巩固和应用知识而设立的。

具体内容:

本单元的教学内容分为6个部分:① 用字母表示数 ②等式 ③方程 ④解方程 ⑤解决问题整理和复习⑥整理和复习

逻辑线索:

用字母表示数是本单元的起始课,通过学习,使学生体会用字母表示数的优越性,为下一节学习方程做好准备。接着学习了等式,用方程核的思想——等量关系来构建数学模式,再学习方程与方程的解法,为以后学习方程打好基础。解决问题是紧接着这些内容编排的,培养学生解决问题的能力。最后是整理复习,提高学生对本单元的掌握水平,教科书按照知识的逻辑顺序来编排,既有利于教师的教,有利于学生的学。

本单元是在学生对小学阶段整数、小数、分数的认识、四则运算,已全部学完,学生的数与代数的知识和经验已经积累到相当的程度,需要对更高一级的数学知识和数学思想进行学习的基础上进行教学的。

本单元因为其数学思想和解决问题的思维方式不同,它把学生习惯的由条件到问题建立数量关系的解决问题思路淡化,取而代之的是按事物发生发展的自然顺序构建数量关系,其核心思想是构建等量关系。方程作为数学领域的重要知识和重要思想,在解决数学问题方面占有重要作用,也是学生在中学学习数、理化和解决问题的重要思想和方法。

1. 学情分析:

(1)学生已有知识基础:已经掌握了小学阶段整数、小数、分数的认识、四则运算

(2)学生已有知识经验与新知识的结合点:

学生对数与代数的知识和经验已经积累到相当的程度,需要对高一级的数学知识和数学思想进行学习。

(3)方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

数学是一门比较抽象的学科,要根据五年级学生的特点,在课堂上创设情景,调动学生的学习积极性,充分激发学生的求知欲,创设出一种轻松愉快的教学氛围。

本单元学生主要是通过生活事件构建等量关系,因此课堂上教学素材的呈现十分重要。比如:学习用字母表示数时,校园失物招领的生活原型的呈现,能够唤起学生对用字母表示数的理解。在这个情境中,他们深切地感到,生活中有时需要用到比数学更有用的符号-字母。在学习等式的意义时,出示学生排演云南佤族舞蹈《木鼓舞》时,舞蹈演员组成的舞蹈队是一个关键的认知背景。一个队的人数是他们首先关注的,这是多个元素的组合。教师依据教科书的信息提问后,学生才会去关注男演员、女演员人数以及与总数的关系。这样,在教师大力渲染霞,集合中部分元素与总数的关系被突显出来,使学生把生活问题提升为数学问题。“舞蹈队总人数”表示的因素有两个:“55”和“40+15”。这两个因素意义相同,大小相等。同理,表示“男演员人数”的两个因素是:“40”“55-15”,表示“女演员人数”的两个因素是“15”和“55-40”其它背景材料、教育因素和渲染程度要弱化,这样才是数学学习。

学生的学习过程中,既有方法和技能的习得,还有学习情感的体验和学习习惯的养成。比如:等式性质的探讨,必须由学生亲自动手探究。由于天平实验要求精度稿,教师先要在课前组织学生熟悉天平的构造,没有天平的学习一定准备好替代品,其次是要规划好实验措施和步骤。学生的操作是在教师指导下完成的。要告诉学生如何分组,先做什么再做什么?操作过程中观察什么现象?谁来做记录……第三,必须交代实验的任务和观察中思考什么问题,避免盲目性。第四,要求学生把观察的结果互动交流,以得到统一的认识和互相的启发。

教师要非常重视每一个学生对所学习的数学模型知识的认识,在学生讨论交流的叙述形成以后,教师要视其情况给予归纳和小结,强调其关键意思和关键文辞。在学习用字母表示数时,要让学生时时叙述使用该字母的缘由和表示的意义,同时让学生清楚含字母的式子不仅表示几个数之间运算关系,也表示几个数的运算结果。在等式和等式性质的认识里,要加强等式的口头交流和书面活动。学生对方程一节的学习可能有些困难,特别是一两个例题和几个作业,对他们的理解和巩固达不到量上的需要,教师可以根据需要适当补充。问题解决,与过去的列方程解应用题相比,从量上和形式上做了大量的删减,只是程序了方程解决问题的.基本要素-构建等量,列出等式(方程)。对于类型方面是无法一一顾及的,只要方法上能够运用就行了。训练中突出抓等量,列方程。

方程的学习与其它知识的学习一样,一定会遇到两极分化或发展不平衡的现象。特别是在探究等式的性质时,教师要非常细心地观察各组学生的表现和他们获得的结论,只要他们基本获得需要的数学思想和结论,只要他们基本获得需要数学思想和结论,就应该给予充分的肯定。在问题解决的过程中,学生一定会提出不同的方案,包括错误的方案。教师应本着求同存异的思想,允许不同的想法存在,同时鼓励学生对多重方法进行比较,寻求大家都能理解的方法和自己独特的方法。在解决问题时既能用自己的方法,也能用别人都理解的方法,就达到融会贯通了。

在教学用字母表示数时,首先创设一个学生喜欢的猜谜语小游戏,在此基础上导入新课,揭示课题。到学生的生活中寻找素材,为学生学习数学创设生活情境。小学数学不是枯燥的帐本,而要来源于生活,应用于生活。学生每接触一个数学知识就必须知道这些数学知识是从哪里来的。“用字母表示数”相对于小学生来说,较抽象深奥,通过创设情境,从学生的生活实践中提出问题,让学生惊奇地发现:“用字母表示数”原来就在我们身边,小小字母的作用还真大:可以表示人名、地名,还可以表示数字。这就使得“用字母表示数”具体而现实,从而调动学生学习的积极性,帮助部分学生消除学习中的畏难情绪。

方程是从学生看得见、摸得着的天平到抽象的,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。要把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在教学时要为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.

以前,我们是根据四则运算的互逆关系来解方程,属于算术领域的思考方法;而用等式的基本性质解方程属于代数领域的思考方法,两者有联系,但后者是前者的发展与提高,运用等式性质解方程具有更广泛的适用性。在现阶段,解简单的方程也许无法清楚明了地显现出“等式的基本性质”的优越性,但随着数学知识的深化,一些较复杂的问题(例如:把一些图书分给某班学生阅读,如果每人分3本,则剩20本;如果每人分4本,还缺25本,这个班有多少学生?解答此题时,学生容易根据等量关系列出如下方程:3X+20=4X-25)用算术思维解方程,解法如下:3X+20=4X-25,4X=3X+20+25,4X=3X+45,4X-3X=45,X=45会显繁难、费力,学生也较难理解与接受;而用等式的基本性质解答:3X+20=4X-25,3X+20-3X=4X-25-3X,X-25+25=20+25,X=45,就能明显地显示出简洁、方便的优越性。可见,运用代数的思考方法解决问题,使学生的思维水平得到了有效提高。

教师的教学效果和学生的学习情况大都是通过学生的练习反馈出来的,因此做好练习环节的反馈设计是每一节教学课教学设计的一个重点。我注重从以下几方面做起:

1、反馈形式要多样。最常用的反馈方法有同桌交换,小组轮换,实物投影展示作业,面批面改等,可以根据自己的需要来安排调整。

2、反馈要有针对性。比如一节课的重点是让学生掌握利用公式解决问题,在练习当中如果仅仅是计算错,可不必放大,提醒学生下次细心一点。如果学生在关键步骤上有了错误----不会列式解决问题,那么教师应引起重视。

3、反馈要有一定的层次性。通过层次反馈将错误类型相同的集中起来一起纠错,既节省了教学时间又提高有效性。

对于所学知识的反馈情况重在落实,每一节课抽出10分钟时间进行检测,老师很快批阅结束,发现问题,有针对性的辅导,直到弄懂会为止。

式与方程教案 篇3

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

①    5x+6=9x②3x+5③7+5×3=22④4x+3y=2

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的`(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

①    2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

式与方程教案 篇4

各位评委老师上午好!

今天我说课的题目是《方程的意义》

《方程的意义》是人教版小学数学五年级上册教材53-54页的内容,下面我从说教材、说学情、说教法学法、说教学流程、说板书设计几个方面对本课的教学进行一下阐述:

一、说教材:

教材分析:方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察、比较、分析对其进行分类,最后归纳、概括出方程的意义,培养了学生分析、比较、归纳、概括、创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础。

学情分析:

五年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此,在这节课中我设计了多种活动,大胆地放手让学生自主探究、合作交流,充分发挥学生的主体作用。从而使学生轻松学到知识。

根据这一部分教学内容在教材中的地位与作用,结合教材以及学生的年龄特点,我制定以下教学目标:

⒈ 知识与技能目标:理解并掌握方程的意义,弄清方程与等式之间的关系。

⒉ 过程与方法目标:(1)在观察、分析、操作、讨论中探究学习;(2)、让学生构建概念数学观念,并解决实际问题。

⒊ 情感态度与价值观目标:(1)、学生在宽松的氛围中学有所得,激发学生的学习兴趣;

(2)、体会知识探索过程中合作交流的乐趣。

教学重点:建立方程的概念。 教学难点:正确区分等式与方程的含义,理解等式与方程的关系。

二、说教法:

教法:这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主的、充满自信的学习数学,平等交流各自对数学的理解,并通过互相合作共同解决所面临的问题。我设计了如下三个方面的教学手段:1、利用多媒体课件进行直观的操作和演示,让每位学生在观察和动手操作的过程中理解和归结出结论。2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实充分利用身边事物。3、创设情境,激发兴趣,让学生能在轻松愉快有趣的氛围中理解掌握知识。

三、说学法:

学法:为了使学生获取《方程的意义.这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间进行观察和思考,在特定的数学活动中自主探究,合作交流,激发学生的学习积极性,增强学生学习知识的信心。让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、比较、概括和应用的能力。用比赛的方式激发学生的积极性,增强自信心。

四、说教学准备:

教师准备:实物天平,自制的多媒体课件,方程贴卡。

五、说教学流程:

为了突出教学重点、突破教学难点,达到已定的教学目标,我安排了以下四个教学环节,即:

创设情境,生成问题——探索交流,解决问题——巩固运用,内化提高——回顾整理,反思提升。

每个环节的具体教学设计如下:

第一环节:创设情境,生成问题。

谜语导入,(古怪老头,肩上挑担,为人正直,偏心不干 ——打一实验用品)引出天平这个公正的大法官,使得学生对天平感兴趣,从而请学生说说对天平的了解,接着视频介绍天平的原理。

认识天平

(1)介绍天平

(2)提问:天平有什么作用?

(3)学生积极回答,教师充分肯定学生的想法。(评价学生)

(4)教师总结并引入新课:天平可以用来量取物体的重量。今天这节课我们就利用这个天平进行演示来研究一下相关的数学问题。

第二环节:探索交流,解决问题。

本环节我设计了以下几个教学活动。

活动一:

1、创设情境,抽象数学算式

情境1:(多媒体演示)天平左边的托盘上盛放2个50克的砝码,右边的托盘上盛放1个100克的砝码。

(1)教师演示课件,提问:①你观察到天平发生了什么变化?

②你能用一个数学算式表示一下这个现象吗?

(2)学生回答问题,并列式:50+50=100(教师板书)

(3)教师小结:当天平左右两边的物体同样重时,天平是平衡的。因此,像50+50=100这个算式,左右两边数值相等,我们把这样的算式称为等式。

(4)左边拿走1个50克的砝码,换一个物体,重y克,可能出现几种情况?

生:天平右边重

师:你能用一个数学算式表示一下这个现象吗?

生:50+y﹥100(教师板书)

生:天平左边重。

师:你能用一个数学算式表示一下这个现象吗?

生:50+y<100(教师板书)

生:天平平衡。 师:你能用一个数学算式表示一下这个现象吗?

生:50+y=100(教师板书)

情境2:(多媒体演示)演示出天平左右盘分别放一个空杯子和一个100克的珐码,使学生观察到在天平平衡,即空杯子的重量和珐玛的重量是相等的,空杯子的重量=100克。继续演示,在杯中倒满水,天平倾斜,说明不平衡,得到100+x>100的不等式。(板书:100+x>100)

再在右端增加150g珐码,又得到100+x=250的等式。(板书: 100+x=250)

情景3:天平左边放一个球,右边方一个50克的砝码,根据不平衡状态得到y<50的不等式。(板书:y<50)接着在左边增加一个同样大的球,天平平衡了,得到y+y=50或2y=50的等式。 (板书:y+y=50或2y=50)

(以上的板书都做成贴片形,可随时移动位置,方便下一环节进行分类。)

活动二:

引导分类,概括方程的意义

在得出这么多的等式和算式后,同学们能将它们进行分类吗?

1、请学生以4人为小组讨论交流,并交流分类的标准。

2、请学生在黑板演示,发表观点。(会出现的分类情况)

①按“是否是等式”进行分类

②按“是否含有未知数”进行分类

③按方程,等式不等式分来

(老师及时评价学生的表现 鼓励表扬)

本节课我选用第三种分类方式,因为这种分类很细致,而且通过这种分类我们能够认识一种新的数学名词---方程

请同学们继续观察这些已经被分好的式子,你能看出它们有什么特征吗?

学生在发言的过程中逐步引出课题《方程的意义》,继续概括出方程的定义:含有未知数的等式叫做方程(板书)。在此基础上,再次让学生观察,讨论与交流,得出方程两个要素:一必须含有未知数(未知数不一定用X表示,未知数不一定只有一个)、二必须是等式(也就要有“=”)。

今天我们又学习了一个新知识,那么你掌握它的相关知识了吗?接下来我们就一起来验证一下吧!

第三环节:巩固运用,内化提高。

练习题组设计如下:

(一)方程意义的巩固

(1)多红旗比赛,下面哪些算式是方程?哪些不是?为什么?

①35+65=100 ②x-14>72 ⑦x+y=p ⑧3a=9

③y+24 ④47=5x+32 ⑨⑩0.2+x>1.3

⑤28<16+14⑥6(a+2)=42 ⑩20-y<x11、 X=0

(2)教师提问:通过这道练习,同学们对方程有了哪些更进一步的认识?

(3)教师充分肯定学生的想法并引导学生总结:

①未知数可以在等式的任意一边,甚至是两边都有。

②任何字母都可以当作未知数??

(二)突破难点,探索“方程与等式“的关系

判断正误并说明原因。

方程一定是等式。( )

等式一定也是方程。( )

几何关系图:

展示学生结论:方程是等式的一部分,等式中含有方程。

(三)根据文字列方程 请一位学生说出他的年龄,老师比他大15岁,你知道老师今年多少岁吗?

(四)根据情景列方程

1、你有办法使天平平衡吗?

2、你能列出方程吗?

第四环节:回顾整理,反思提升。

这一环节,我利用课件展示以下几个问题:

? 今天你学会了什么?? 你有什么收获?

让学生以小组为单位,每位学生充分发言,交流学习所得。

在评价方面:先让学生自评,接着让学生互评,最后教师表扬全班学生,以增强学生的自信心和荣誉感,让学生再次体会成功的喜悦。使他们更加热爱数学。

八、说板书设计:

科学的板书设计往往对学生全面理解学习内容,提高学习效率,起到事半功倍的作用。 本课的板书设计包括:

方程的意义

50+y=100 50+50=100 50+y﹥100

100+x=25050+y<100

y+y=50或2y=50 100+x>100

方程 等式 非等式

含有未知数的等式叫做方程

这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。

以上是我对《方程的意义》这部分知识的分析与教学设计。由于时间短促,有很多不当之处,希望各位评委老师多加批评指正,我的说课到此结束。谢谢大家!

式与方程教案 篇5

下面我将从“教材分析”、“教法与学法设计”、“教学过程”和“板书设计”四个部分进行说课。

一、教材分析

《方程的意义》是五年级上册第四单元的第一个信息窗,本节课是学生在学习了四则运算的意义和学会用字母表示数的基础上进行学习的,从单元的角度来看,这节课为后面列方程和解方程打下了基础。从整个年级的角度来讲,是对所学四则运算意义和数量关系的进一步深化,又是为今后学习代数知识做准备,在知识衔接上具有重要作用。

根据教学内容,结合课程标准和五年级学生的认知特点,我确立了本节课的教学目标、教学重点及难点。

教学目标:

1.知识目标:理解并掌握方程的意义,弄清方程与等式之间的关系。

2.能力目标:正确地应用方程的意义辨别方程,帮助学生建立初步的分类思想。培养学生认真观察、思考的学习品质及抽象概括能力,在合作学习中增强学生的合作意识。

3.情感目标:加强师生的情感交流,使学生在民主和谐的气氛中获取新知;教学重难点:会用方程的意义去判断一个式子是否是方程并用方程表示数量关系。

二、教法学法

新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。根据小学生的认知特点和规律及教材特点,这节课,我主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学。在教学过程中我本着“以人为本”的教学理念,放手让学生在有限的时间和空间里,根据自己的学习体验,用合作的方式,通过观察、探究、讨论、比较等方法进行自主学习。

三、教学过程

课堂教学是教学的主渠道,根据教学要求为实施教学计划突破教学的重、难点,我将教学过程分为以下六部分。

(一)创设情境,提供素材

针对“方程的意义”这节课的特点以及结合小学生的年龄特征,从学生熟悉喜爱的大熊猫入手,创设了喂养熊猫的情境,提出:管理员叔叔正要给熊猫喂米粉呢!仔细观察,从图中你了解到哪些信息?

通过借助研究熊猫每次吃多少米粉这一问题,激发学生的探究欲望,并顺势引出天平,体现天平产生的必要性,使等式、不等式这些素材的提供有了直观的支持。

(二)分析素材,理解概念

这一环节是理解方程意义的中心环节,为了突出重点,突破难点,发挥学生的主体作用,我设计了以下几个小环节:

1.认识天平

出示天平,天平是平衡的,再引导学生看,老师进行演示:在天平的天平左边放1个50克的砝码,右边放1个100克的砝码,提出:天平怎么样了?引导学生说出天平不平衡。

2.认识等式

继续引导学生在天平的左边放50克的砝码,提问:现在天平怎么样了?引导学生说出天平又平衡了,小结:说明天平两边所放的物体的重量相等,提出你能用式子来表示天平平衡的这种现象吗?板书20+30=50。教师及时点明这是一个等式。表示等号两边的数量相等。这样,学生的印象也非常深刻。在学生建立等式概念后,让学生上讲台操作演示其他放砝码使天平也会平衡的方法,讨论得出结论——这些都是等式。

3.认识不等式,含有未知数的等式

在学生巩固了等式的概念后,教师再借助天平进行演示:在天平左边放20克物体,右边放100克砝码,这时候天平怎样了?现在我们往左盘里加一盒重X克的物体,仔细观察这说明左右两边重量相等。用式子表示可以写成: 20+X=100。同学们通过观察、思考、交流后得出:这也是一个等式,但它是一个含有未知数的等式。为了加深学生的感性认识。我还设计了这个例子:天平的左边放两个相同的未知重量的物体,右边入100克砝码,可以用式子表示2X=100。通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用生活原型帮助学生理解方程的意义,这样的设计激发了学生的学习兴趣、培养了学生的观察能力和发现能力。

师生在共同的操作过程中,经历了天平从平衡到不平衡再到平衡的动态过程,使学生在直观感受的基础上,深刻的理解天平左右两边质量相等,天平才会平衡,天平平衡了,就可以用一个等式来表示天平的平衡情况。使得学生体验到具体的数量关系可以用抽象的符号化的式子表示,培养了学生的符号意识

(三)借助素材,总结概念

以上我们初步认识了含有未知数的等式,接下来我们再继续加深这一内容的认识。出示:根据图意写出它们之间的关系是:2x=150、3x+10=100随后提出问题:2x=150、3x+10=100是等式吗?它含有未知数吗?当X等于多少,等式成立?让学生思考,交流后说出:2x=150、3x+10=100也是含有未知数的等式。引导学生通过自己的观察、思考、

动口说一说,培养了学生探究新知的思维品质,促进思维的发展。我们知道数学来源于生活,生活处处充满数学。

为了培养学生的发现和抽象概括能力,同时进一步理解方程的意义,我让学生分组学习,引导他们先找20+X=100,2x=150这两个等式的共同特征,然后归纳概括什么叫做方程?最后得出:像20+X=100、2x=150、3x+10=100等这样的含有未知数的等式,叫做方程。

为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过让孩子在圈一圈的过程中子让的得出“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。

(四)巩固拓展,应用概念

1.基础性练习:这些式子中,哪些是方程?

15+5=20()

2x+3﹥10 ()

24+6y=160

3x+5y=160()

6x +★=10( )

2.列方程。

3.想一想,填一填。

4.看图列方程。

(五)全课总结,布置作业

这节课,你学懂了什么知识?还有什么疑问?这样的设计概括了整节课的主要知识点,为今后学习解方程和列方程解答应用题作好铺垫。

四、板书设计

式与方程教案 篇6

椭圆的标准方程

椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。

1.椭圆的定义和特点

椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。

椭圆的特点:

1)椭圆所有点到中心的距离之和相等。

2)对称轴平分主轴,并垂直于主轴。

3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。

2.椭圆的方程

我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。

由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:

(x-h)^2+(y-k)^2=(ae)^2

其中,a和e是椭圆的参数之一。

我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:

(x-h)^2/a^2+(y-k)^2/b^2=1

椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。

3.椭圆的性质

1)椭圆的离心率e(02)椭圆的平面积为πab。

3)椭圆的周长不能用初等函数表示。

4)椭圆的离心率越接近于0,它趋近于一个圆。

4.椭圆的应用

椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:

1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。

2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。

3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。

4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。

总结

椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

式与方程教案 篇7

椭圆是二维平面上的一种几何形状,其形状近似于一个扁圆的球。其特点是有两个焦点,所有点到这两个焦点距离之和相等。椭圆的标准方程可以通过焦点和长轴长度来确定。在本篇文章中,我们将重点介绍椭圆的标准方程及其相关的性质和应用。

一、椭圆的标准方程

椭圆的标准方程有两种形式,一种是普通形式,另一种是中心形式。我们先来看看椭圆的普通形式:

$\displaystyle\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$

其中,(h,k)表示椭圆的中心坐标,a是长轴的长度,b是短轴的长度。从上式中可以看出,椭圆是对称的,其中心点位于(x,y)平面上。

椭圆的中心形式为:

$\displaystyle\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$

其中(h,k)为椭圆的中心点坐标,a是长轴的长度,b是短轴的长度。从中心形式可以看出,椭圆的中心这个重要的点可以直接读出,并且坐标为(h,k)。

二、椭圆的性质

1、椭圆的离心率

椭圆的离心率定义为焦距与长轴的比值,即:

$\displaystyle e=\frac{c}{a}$

其中,c表示两个焦点之间的距离。对于任何一个椭圆,离心率必须满足0≤e

2、椭圆的焦点坐标

椭圆有两个焦点,其坐标可以通过下面的公式计算:

$(h±ae,k)$

其中,(h,k)表示椭圆的中心点坐标,a是长轴的长度,e是椭圆的离心率。

3、椭圆的面积

椭圆的面积可以通过下面的公式计算:

$S=πab$

其中a是长轴的长度,b是短轴的长度。

三、椭圆的应用

1、轨道运动

椭圆是天体广泛运动的形状之一,例如人造卫星、行星、彗星等都沿着椭圆轨道运行。科学家们通过对椭圆轨道的模拟和分析,可以计算出行星、卫星等天体的运动情况,进而掌握它们的位置和运动状态。

2、建筑设计

椭圆是一种非常常见的建筑设计元素。例如,椭圆形的穹顶可以为建筑物提供更好的稳定性和抗震能力。椭圆形的立柱也能更好地承受建筑物的重量。椭圆形的窗户则提供了更大的采光面积,让人们感受到更加宽敞和明亮。

3、医疗图像处理

椭圆也具有实用价值。例如,医学图像处理中,医生们可以利用椭圆轮廓测量器测量肿瘤的形状、尺寸等信息,从而对病情进行更准确的评估和治疗。

总之,椭圆是一个重要的二维图形,具有广泛的应用和实用价值。通过椭圆的标准方程和性质,我们可以更好地理解椭圆,并且将它应用到实际生活和工作中。

式与方程教案 篇8

教学目标:

1、结合图例,根据等式不变的性质,学会解简易方程。

2、掌握解方程的书写格式,并能用代入法进行检验。

3、提高学生的分析、理解能力,同时渗透函数的思想。

教学重点:

掌握解方程的方法和书写格式。

2、判断下面各式哪些是方程?

a+24=734 X =36+1723÷a>43X +843 X +4y=848÷a=9

3、后面括号中哪个x的值是方程的解?

4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)

(1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?

(4)师:我们可以用天平保持平衡的道理来帮助解方程。

问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?

(10)天平两边同时减去同一个数,天平两边还平衡吗?

(11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)

2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程

的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)

三、练习。

1、出示课件:第59页做一做的第一题中的第一个图:列方程解答并验算

(1)学生独立完成,师巡视。

(2)指名学生板演,并说说如何解答的?

2、加法会解了,那么减法又怎样做呢?我们来挑战一下。

(2)投影学生的计算结果,让学生说出解题思路。

A:x+1.2=5.7B:x-1.8=4 x+1.2-1.2=5.7-1.2解:x-1.8+1.8=4+4 x=4.5x=8

数学课本63页练习十一的第5题中的前四题。

式与方程教案收藏


本篇文章是趣祝福小编为大家精选的关于“式与方程教案”的精心整理,如果你觉得这个很有用别忘了分享给你的朋友们。教案课件是老师上课预先准备好的,而课件内容需要老师自己去设计完善。教案是创造性教育和创新教学的必要条件。

式与方程教案【篇1】

教材分析

圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的'标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

教学目标

1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

教学重点难点

以及措施

教学重点:圆的标准方程理解及运用

教学难点:根据不同条件,利用待定系数求圆的标准方程。

根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

学习者分析

高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

教法设计

问题情境引入法 启发式教学法 讲授法

学法指导

自主学习法 讨论交流法 练习巩固法

教学准备

ppt课件 导学案

教学环节

教学内容

教师活动

学生活动

设计意图

情景引入

回顾复习

(2分钟)

1.观赏生活中有关圆的图片

2.回顾复习圆的定义,并观看圆的生成flash动画。

提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?

教师创设情景,引领学生感受圆。

教师提出问题。引导学生思考,引出本节主旨。

学生观赏圆的图片和动画,思考如何表示圆的方程。

生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用

自主学习

(5分钟)

1.介绍动点轨迹方程的求解步骤:

(1)建系:在图形中建立适当的坐标系;

(2)设点:用有序实数对(x,y)表示曲 线上任意一点M的坐标;

(3)列式:用坐标表示条件P(M)的方程 ;

(4)化简:对P(M)方程化简到最简形式;

2.学生自主学习圆的方程推导,并完成相应学案内容,

教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程

自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。

培养学生自主学习,获取知识的能力

合作探究(10分钟)

1.根据圆的标准方程说明确定圆的方程的条件有哪些?

2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:

(1)点在圆上

(2)点在圆外

(3)点在圆内

教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。

学生展开合作性的探讨,并陈述自己的研究成果。

通过合作探究和自我的展示,鼓励学生合作学习的品质

当堂训练(18分钟)

1.求下列圆的圆心坐标和半径

C1: x2+y2=5

C2: (x-3)2+y2=4

C3: x2+(y+1)2=a2(a≠0)

2. 以C(4,-6)为圆心,半径等于3的圆的标准方程

3. 设圆(x-a)2+(y-b)2=r2

则坐标原点的位置是( )

A.在圆外 B.在圆上

C.在圆内 D.与a的取值有关

4.写出下列各圆的标准方程(1)圆心在原点,半径等于5

(2)经过点P(5,1),圆心在点C(6,-2);

(3)以A(2,5),B(0,-1)为直径的圆.

5.下列方程分别表示什么图形

(1) x2+y2=0

(2) (x-1)2 =8-(y+2)2

(3) 《圆的标准方程》教学设计-贾伟

6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图

指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。

学生自主开展训练,并纠正学习中所遇到的问题

巩固所学知识,并查缺补漏。

回顾小结

(1分钟)

1.你学到了哪些知识?

2.你掌握了哪些技能?

3.你体会到了哪些数学思想?

采用提问的形式帮助学生回顾和分析本节所学。

学生思考并从知识、技能和思想方法上回顾总结。

培养学生归纳总结能力

作业布置

(1分钟)

课本87页习题2-2

A组的第1道题

布置训练任务

标记并完成相应的任务

检测学生掌握知识情况。

教学反思

本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。

教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。

式与方程教案【篇2】

简易方程这一小节的前面主要是复习、归纳小学学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。

分析 方程(1)的左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得 ,方程(2)的解题思路与(1)类似。

两边都乘以3,得 。

(2)方程两边都加上6,得 。

方程两边都乘以 ,得 ,即 。

注意:(1)根据方程的解的概念,我们可以将所得结果代入原方程检验,如果左边=右边,说明结果是正确的,否则,左边≠右边,说明你求得的x的值,不是原方程的解,肯定计算有错误,这时,一定要细心检查,或者再重解一遍.

(2)解简易方程时,不要求写出检验这一步.

例3甲队有54人,乙队有66人,问从甲队调给乙队几人能使甲队人数是乙队人数的 ?

分析此题必须弄清:一、甲、乙两队原来各有多少人;二、变动后甲、乙两队各有多少人(注意:甲队减少的人数正是乙队增加的人数);三、题中的等量关系是:变动后甲队人数是乙队人数的 ,即变动后甲队人数的3倍等于乙队人数.

解  设从甲队调给乙队x人,

则变动后甲队有 人,乙队有 人,根据题意,得:

1.判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么.

(1)3y-1=2y;  (2)3+4x+5x2;  (3)7×8=8×7  (4)6=0.

2.根据条件列出方程:

(l)某数的一半比某数的3倍大4;

(2)某数比它的'平方小42.

3.检验下列各小题括号里的数是不是它前面的方程的解:

1.请学生回答以下问题:

(1)本节课学习了哪些内容?

(2)方程与代数式,方程与等式的区别是什么?

(3)如何列方程?

2.教师在学生回答完上述问题的基础上,应指出:

(1)方程、等式、代数式,这三者的定义是正确区分它们的唯一标准;

(2)方程的解是一个数值(或几个数值),它是使方程左、右两边的值相等的未知数的值它是根据未知数与已知数之间的相等关系确定的.而解方程是指确定方程的解的过程,是一个变形过程.

1.根据所给条件列出方程:

(1)某数与6的和的3倍等于21;

(2)某数的7倍比某数大5;

(3)某数与3的和的平方等于这数的15倍减去5;

(4)矩形的周长是40,长比宽多10,求矩形的长与宽;

(5)三个连续整数之和为75,求这三个数.

2.检验下列各小题括号里的数是否是它前面的方程的解:

(3)x(x+1)=12,(x=3,x=4).

式与方程教案【篇3】

本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。

第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

第12~14页全单元内容的整理与练习。

本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

1?从等式到方程,逐步构建新的数学知识。

方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

(1)

借助天平体会等式的含义。

等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。

天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

例2继续教学等式,教材的布置有三个特点:

第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。

(2)

教学方程的意义,突出概念的内涵与外延。

“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:

像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。

(3)

用方程表示直观情境里的相等关系。

第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。

2?利用等式的性质解方程。

在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:

第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。

(1)

在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。

教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。

例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()○20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。

例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:

一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。

(2)

应用等式的性质解方程。

例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:

只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:

等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:

一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,

引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的'书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

式与方程教案【篇4】

教学目标:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。

教学重点、难点:应用等式的性质,理解和较熟练掌握简易方程的解法。

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。

(2) 乘法交换律。

(3) 长方形的面积计算公式。

让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?

2、做“练一练”第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

1、复习方程概念。

提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

2、做“练一练”第2题。

小黑板出示,学生判断并说明理由。提问:5x-4x=2里未知数x等于几,x=2是这个方程的什么?7×0.3+x=2.5里未知数x等于几?x=0.4是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?

3、解简易方程。

(1) 做“练一练”第3题第一组题。

指名两人板演,其余学生做在练习本上。集体订正:解第一个方程是怎样想的,检查解方程时每一步依据什么做的。第二个方程与第一个有什么不同,解方程时有什么不同?指出:解方程时先看清题目,根据运算顺序,能先算的就先算出来.不能算的就看做一个未知数。我们现在解方程是一般根据加减法之间、乘除法之间的关系来进行的。(结合板书:解方程:能先算的要先算,再按各部分关系来解)追问:这两题可以怎样检验方程的解对不对?

(2) 做“练一练”第3题后两组题。

指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。

(3) 做“练一练”第4题。

让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。

今天复习了哪些知识?你进一步明确了什么内容?

课堂作业;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。

家庭作业;练习十四第3题前三题、第5题。

式与方程教案【篇5】

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是简易方程解决问题教案,请参考!

学习目标:

1.探索具体问题中的数量关系和变化规律,能用线形示意图和柱状示意图分析问题

2.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。

3.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。

学习难点:

分析与确定问题中的等量关系,线形示意图和柱状示意图分析问题。

问题一:

一个书包进价为60元,打八折销售后仍获利20元,这个书包原定价为_______元

问题二:一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?

问题三:商店对某种商品调价,按原价的8折出售,此时商品的'利润率是10%,此商品的进价为1600元,商品的原价是多少?

巩固练习:

1、某商品的进价为80元,销售价为100元,则该商品的利润为元,利润率为;

2.小明的父亲到银行存入0元人民币,存期一年,年利率为1,98%,到期应交纳所获得利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款

3.一种商品的买入单价为1500元,如果出售一件商品要获得利润是卖出单价的15%,那么这种商品的卖出单价应定多少元?(精确到1元)

4.商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的原价是多少?

某人把若干元按三年期的定期储蓄存入银行,假设年利率为为5%,到期支取时扣除所得税实得利息为720元(银行存款所得税的税率为20%,所得税金额=所得利息×20%),求存入银行的本金是多少?

购买一台售价为10225元的家用电器,分两期付款,且每期付款相等,第一期款在购买时付清,经一年后付第二期款,这样就付清了全部售价和第一期付款后欠款部分的利息,如果年利率是4.5%,那么每期付款是多少元?

通过以上问题的解决,你觉得怎样如何利用线形示意图和柱状示意图分析问题?

1.一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?

2.某种家具的标价为132元,按9折出售,可获利10%(相对于进货价).求这种家具的进货价.

3.一件夹克杉先按成本提高40%标价,再以八折(标价的70%)出售,结果获利38元,这件夹克杉的成本是多少元?

4.店主老王采购了一批灯管,每根13元,在运输过程中不小心损坏了12根,出售灯管的单价是15元,售完后共获利润1020元,问一共购进多少根灯管?

5.某商店有两种不同的mp3都卖了168元,以成本价计算,其中一个赢利20%,另一个亏本20%,则这次出售中商店是赚了,还是赔了?

6.服装销售中只要高出进价20%就可以盈利,但老板们常以50%~100%标价,假如你准备买一件标价200元的服装,可以在什么范围内还价?

式与方程教案【篇6】

圆的一般方程

教学目标(一)知识教学要点

使学生掌握圆的一般方程的特点;能够将圆的一般方程转换为圆的标准,可以通过方程得到圆心的坐标和半径;圆的方程可以用待定系数法从已知条件推导出来。

(二)能力训练要点

让学生掌握用公式求圆心和半径的方法,熟练运用待定系数法从已知条件推导圆法,熟练运用待定系数法从已知条件推导圆方程,培养学生用匹配法和待定系数法解决实际问题的能力。

(3)学科渗透点

通过对固定系数法的研究,为基础知识的深入学习打下坚实的基础数学和其他相关学科的基本方法。基础知识。

教学要点: (1)能用匹配法从圆的一般方程求出圆心的坐标和半径; (2) 能用待定系数法从已知条件推导出圆的方程。

教学难点:圆的一般方程的特征。

教学疑点:圆的一般方程要加上约束D2+E2-4F>0。活动设计

讲座、问题、归纳、演示板、总结、再讲座、再演示板。教学过程

(1)复习和介绍新课

前面我们已经讨论过圆的标准方程(x-a)2+(y-b) 2= r2,现在我们可以展开 x2+y2-2ax-2by+a2+b2-r2=0。可以看出,任意圆的方程都可以写成x2+y2+Dx+Ey+F=0。请想一想:x2+y2+Dx+Ey+F=0形状的方程的曲线是圆吗?让我们深入研究一下这个问题。审查导致主题“圆的一般方程”。

(2)圆一般方程的定义

1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹

通过公式左边x2+y2+Dx+Ey+F=0:

(1)

(1) 当D2+ E2-4F>0,将式(1)与标准方程比较,可以看出方程

是一个有半径的圆;

(3)当D2+E2-4F

此时教师引导学生得出方程x2+y2+Dx+Ey+F=0的轨迹是圆和

法的结论。

2. 圆的一般方程的定义

?当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程。

(3)圆的一般方程的特征请分析以下问题:

问题:比较两个变量的二次方程的一般形式Ax2+ Bxy+ Cy2+Dx+Ey+F=0。

(2)

带圆的一般方程

x2+y2+Dx+Ey+F=0, (D2+E2-4F>0) 。

(3) 从

的系数可以得出什么结论?鼓励学生得出结论。

二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0时有条件: (1) x2和y2的系数相同且不等于0,即A=C≠0; (2)没有xy项,即B=0; (3) D2+E2-4AF>0。

就是圆的意思。条件(3)用同一个方程除以 A 或 C 不难得出。老师还强调:

(1) 条件(1)和(2)是必要条件,但不是充分条件用二次方程(2)来表示一个圆; (2) 条件(1)、(2)和(3)一起是二次方程(2)表示圆的充要条件。 (4) 应用与实例

和圆的标准方程(x-a)2+(y-b)2=r2一样,方程x2+y2+Dx+Ey+F=0也包含三个系数D , E, F,所以必须有三个独立的条件来确定一个圆。在下面看看他们的应用程序。

示例

1 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0, (2)x2+y2+2by=0 .

这个例子是学生做的,老师纠正错误,给出正确答案:(1)圆心为(4,-3),半径为5; (2) 圆心为(0, -b) ),半径为|b|,注意半径不是b。

同时强调:从圆的一般方程求圆心的坐标和半径,一般采用匹配法,必须掌握。示例

2 求一个圆通过三个点O(0,0)、A(1,1) 和B(4,2) 的方程。解:设圆的方程为x2+y2+Dx+Ey+F=0,从圆上的O,A,B,有

解:D=-8,E= 6. F=0,所以求圆的方程为x2+y2-8x+6=0。例2 小结:

1、用待定系数法求圆方程的步骤:

(1)根据题意,设圆圈为标准公式或通用公式; (2)根据条件或D、E、F的方程列出a、b、r的信息;

2.关于什么时候设置圆的标准方程,什么时候设置圆的一般方程:一般来说,如果从圆心坐标和半径容易求出在已知条件下,或者需要使用圆心坐标和半径方程时,往往需要设置圆的方程。标准方程;如果已知条件与圆心的坐标或半径没有直接关系,通常会设置圆的一般方程。看下面的例子:

例子

3 在直线l上求圆心:x+y=0,过两个圆C1:x2+y2-2x+10y-24=圆在0与交点处的方程C2:x2+y2+2x+2y-8=0。

(0,2)。

设求圆的方程为(x-a)2+(y-b)2=r2,因为两点都在求圆上,圆心在直线l上,所以方程组是

所以要求圆的方程是:(x+3)2+(y-3)2=10。

这时老师指出:

(1)从已知条件,很容易求出圆心的坐标,半径,或者使用圆心坐标和半径方程。标准方程。

(2) 这个问题也可以通过圆系统方程来求解: 设待求圆的方程为:

x2+ y2-2x+10y-24 +λ(x2+y2 +2x+2y-8)=0(λ≠-1) 整理公式:

从圆心开始在直线l上,λ=-2。

将λ=-2代入假设方程,得到求圆的方程为x2+y2+6x-6y+8=0。这个方法会在圆与圆的位置关系中介绍,这里给同学们留个悬念。

,求这条曲线的方程,画出曲线。本例中,请两名学生下棋,老师巡视,并提醒学生:

(1)由于曲线表示的图形是未知的,曲线方程只能由轨迹法,在曲线 M(x , y) 上任意一点,可以通过求曲线方程的一般步骤得到;

(2)把圆的一般方程写成标准方程,然后画出圆心、半径、图形的坐标。 (5)小结

1.圆的一般方程的定义和特点; 2. 2. 用匹配法找出圆心坐标和半径; 2. 用待定系数法,推导出圆的方程。

V.布置作业

1. 求下列圆的一般方程:

(1) 过点A(5, 1),圆心在点 C(8, -3); (2)经过A(-1, 5 ), B(5, 5), C(6, -2)三个点。

2.求通过两个圆的交点x2+y2+6x-4=0和x2+y2+6y-28=0的圆的方程,其圆心在x-y线上-4=0。

3. 等腰三角形的顶点是A(4, 2),底边的一个端点是B(3, 5)。找到另一个端点的轨迹方程,并说明它的轨迹是什么。

4. A、B、C是已知直线上的三个不动点,移动点P不在这条直线上,令∠APB=∠BPC,求其运动轨迹移动点 P.

作业答案:

1. (1)x2+y2-16x+6y+48=0 (2)x2+y2-4x-2y-20 =0 2. x2+y2-x+7y-32=0 3.所需轨迹方程为x2+y2-8x-4y+10=0(x≠3,x≠5),轨迹为

4。以B为原点,直线ABC为x轴建立笛卡尔坐标系,令A(-a, 0), C(c, 0) (a>0, c>0), P(x, y),可得方程为:

(a2-c2)x2+(a2-c2)y2-2ac(a+c)x=0。

当a=c时,则x=0(y≠0),即从y轴移开原点; 当a≠c时,则(x-

和x轴的两个交点。

式与方程教案【篇7】

师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,例如方程: 是方程的解,求 的过程叫解方程.)

学生活动:一个学生回答,师板书,并要求学生说出根据。

解:第一步 ,(把 看作一个数,根据一个加数等于和减去另一个数)

师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

学生活动:相互讨论达成共识(合理。因把 代入方程 ,左边=右边,所以 是方程的解)

【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

【教法说明】虽然解方程的过程由教师板书,但整个思路是由学生形成的,使新方法在学生头脑中越来越清晰,直到真正认识并掌握它,这样也体现了学生的主体性,由“学会”型向“会学”型转化,对培养学生的思维能力很有帮助.

师:上题在我们共同努力下得以解决,下面看你们自己的表现怎样?

例2  解方程 。

师生共同订正.

师:这里虽不要求同学们检验,但今后希望同学们养成自我检查的良好习惯.

【教法说明】通过例2的教学训练学生的判断能力及运算能力,树立矛盾转化思想.

(1) ; (2) ;

4.求 使 的值等于27。

学生活动:1、2题口答,3、4题在练习本上书写,可互相讨论,3、4题师巡回指导。

【教法说明】1题让学生困难同学回答,增强自信心;2题澄清模糊认识,可充分讨论,让学生各抒已见;3题较1题稍复杂,一是让学生体会新解法的优越性,二是培养学生观察分析解决问题的能力;4题其实也是解方程,目的是开阔学生思路,培养学生勇于探索、大胆求异的创新精神。

1.按照新方法解方程,一般采用下面两点:

(1)方程两边都加上(或减去)同一适当的数;

(2)方程两边都乘以(或除以)同一适当的数。

2.为了保证运算准确,养成检验的习惯。

(1)在(1) ;(2) ;(3) ;(4) 中方程有( )

A. B.

(一)必做题:课本第31页A组1.(2)(4)、 2.(1)(3)(5)

式与方程教案【篇8】

今天我要说课的题目是《简易方程》,接下来我将从教材分析、学情分析、教法学法设计、教学过程设计和板书六个方面展开我的说课。

《简易方程》是青岛版小学数学五年级上册四单元第一个信息窗的教学内容;

本节课主要介绍了测量熊猫的食量的情境,在探究中引出方程的概念和意义;

前面学生已经学习了等式和不等式的概念,会用字母表示数,这为本节课的学习做了很好的铺垫,同时这部分的内容是方程这一领域的起始课,能为以后学习用方程解决生活实际问题,打下基础;

因此本节课在小学数学学习中起到承上启下的过渡作用。

基于以上对教材地位和作用的分析,结合新课标的目标要求,我设计如下三维教学目标:

知识与技能目标:能够借助天平的性质理解方程的意义,掌握方程的概念,灵活列出等式方程。

过程与方法目标:学生在问题情境中探索分析能力不断提升;通过分组学习小组讨论的方式,发挥学生与他人沟通、分工合作的能力。

情感态度价值观目标:养成认真细致、严谨求实的科学态度,激发学生的求知欲和学习兴趣。

通过以上对教材及教学目标的分析,我将本节课的重、难点确定如下:

奥苏伯尔认为:“影响学习的最重要因素,就是学习者已经知道了什么,要探明这一点,并据此进行教学。”我就需要进行学情分析

五年级的学生开始进入少年期,求知欲和好奇心都有所增强,逻辑思维开始萌发但仍处于形象思维阶段,但学生第一次接触方程,转化划归的思想比较弱,可能难于理解方程的意义,因此我会注意这方面的问题,设置天平左右相等的情境、运用直观教具引导学生理解方程的由来,突破重难点,提高他们解决问题的能力。

基于以上对教学内容、学生情况的分析以及新课标对教学的要求,本课我将主要以引导启发法为主,同时辅之以创设情境、讲练结合、类比法等教学方法进行教学,此外,我还将借助多媒体等直观教具帮助学生理解体会本课的内容,让学生体验玩中学、动中思、做中悟的乐趣。

教师的教是为了学生更好的学,科学的方法是打开知识宝库的“金钥匙”,结合本课内容,我将学法主要确定为:自主探究和合作交流法。学生通过自主探究能够自主、愉快地学习,主动参与到课堂当中。合作交流也可以培养学生间相互交流与合作的精神。这一过程不仅可以培养学生自学、思维能力,更符合新课标要求的会问、会想和会用。

根据建构主义理论中情境、协作、会话和意义建构的创设理念,我主要从以下几个环节构建我的教学过程。

良好的导入可以激发调动学生的思维,引起学习兴趣,达到“课未始、兴已浓”的迫切求知状态。本课我会采用谈话法和视频导入的方式向学生展示大熊猫的生活场景并提出“需要每次给大熊猫喂食多少g的实物呢?你能否帮助饲养员正确地给大熊猫喂食呢?”既有助于培养学生乐于助人的好品质又能成功地吸引学生的注意力。

教师提供天平教具,师生共同用天平秤一秤的方式,验证空碗的重量20g,接下来测量一碗米的重量,如果在天平右边放50g的砝码,天平偏向左边;如果天平右边放100g的砝码,天平则偏向右边;如果天平右边放70g的砝码,天平平衡了。师生在共同操作的过程中,经历了天平从不平衡到平衡的动态过程,学生在直观感受的基础上,深刻理解天平平衡即左右质量相等的特性。

根据以上三个情境,向学生提问:一碗米的重量可以用字母表示吗?天平的左右两边的重量怎么表示,又分别是什么关系呢?你能根据以上三种情况,列出式子吗?

学生前后四人为一小组讨论交流,并请小组代表陈述讨论结果,其他组给予补充,并请学生说明列式子的依据。

学生讨论的过程中,收集学生典型的答案,通过投影仪展示到大屏幕上,根据学生提出写出的这些式子,20+x=70 20+x小于10020+x大于50,进一步向学生发问:你能给这些式子分类吗?进而将等式提炼出来。本节课的重点也突显出来了,通过此过程学生可以亲身体验分类的方法,有助于分析和解决新的数学问题。

向学生出示一组PPT图片,首先让学生找出左右两边的等量关系,让后用x和数字分别表示出左右两边列出等式。(难点就是找等量关系列方程)

引导学生分独立思考然后归纳,试着跟同桌说一说,然后请同学回答,这些等式有哪些共同特征?根据学生回答紧接着提取出方程的概念(板书:含有未知数的等式叫做方程。)为了加深学生的反向思维,我会向学生提出,等式与方程一样吗?有哪些不同呢?进而引导学生区分等式与方程。

为了进一步强化所学知识,我会选取一些有层次的题目考一考学生。第一组是基础练习,设置火眼金睛的游戏方式,找出众多式子当中的方程,加深学生对等式和方程的辨析和灵活运用。第二组是根据图示找出等量关系列方程,通过练习的方式一举击破本节课难点,学生体会到解决问题的成就感,增加学习数学的信心;

为充分发挥学生的主体作用,我会提问“今天你学到了什么,有什么收获”进而通过学生相互交流补充完善本节课。

为了增进学生对知识的理解,提高学生消化知识的能力,课后给学生布置这样一道开放性的家庭作业:将你今天所学的内容写成一篇简短的数学日记。

我的板书,层次清晰、重点突出,易于学生学习。

以上就是我的全部说课内容,谢谢。

式与方程教案【篇9】

《直线与方程》单元教学设计

摘 要: 单元教学设计是指对某一单元的教学内容作出具体的教学活动设计。单元教学设计要有整体性、相关性、阶梯性和综合性。本文以人教A版高中数学必修2《直线与方程》一章为例,从单元教学目标、要素分析、教学流程设计等方面进行了整体设计,旨在更好地实现教与学。

关键词: 直线与方程 单元教学设计 教学要素

单元教学设计是指对某一单元的教学内容作出具体的教学活动设计,这里的单元可是一章,也可是以某个知识内容为主的知识模块。单元教学设计要有整体性、相关性、阶梯性和综合性。本文以人教A版高中数学必修2《直线与方程》一章为例进行了单元教学设计,设计内容包括单元教学目标、要素分析(其中包含数学分析、标准分析、学生分析、重点分析、教材比较分析、教学方式分析等)、教学流程设计、典型案例设计和反思与改进等。

一、单元教学目标

(1)理解并体会用代数方法研究直线问题的基本思路:先在平面直角坐标系中建立直线的代数方程,再通过方程,用代数方法解决几何问题。(2)初步形成用代数方法解决几何问题的能力,体会数形结合的思想。

二、要素分析

1.数学分析:直线与方程为人教A版教材必修2第三章内容,必修2包括立体几何初步、解析几何初步,其中立体几何初步分为空间几何体,点、直线、平面之间的位置关系。直线与方程是继立体几何的学习之后从代数的观点认识、描述、刻画直线,是在平面直角坐标系中建立直线的方程,运用代数方法研究它们的几何性质及其相互位置关系。它在高中数学中的地位非常重要,可以说是高中数学体系中的“交通枢纽”。它与代数中的一次函数、二元一次方程、几何中的直线和不等式及线性规划等内容都有关联。

在本章教学中,学生应该经历如下的过程:首先将直线的倾斜角代数化,探索确定直线位置的几何要素,建立直线的方程,把直线问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种数形结合的思想贯穿教学的始终,并且在后续课程中不断体现。

2.标准分析:①坐标法的渗透与掌握:解析几何研究问题的主要方法是坐标法,它是解析几何中最基本的研究方法。②作为后续学习的基础,要灵活地根据条件确定或者待定直线的方程,如将直线方程预设成点斜式、斜截式或一般式,等等。③认识到直线方程中的系数唯一确定直线的几何特性,可类比学习后续课程椭圆方程中的系数a,b,c,双曲线标准方程的系数,抛物线的系数,也可以延伸至两条直线的位置关系取决于直线方程中的系数,即取决于两个重要的量――斜率和截距。④本单元内容属于解析几何的范畴,是用代数方法研究图形的几何性质,体现数形结合的重要思想。所以在本单元学习中,学生要初步形成用代数方法解决几何问题的能力,体会数形结合的思想,其核心可以由以下知识结构图显现出来:

3.学习者特征分析:已有一次函数知识作为基础;刚刚结束了立体几何初步的学习,现在学习直线与方程可以说是对点、直线的再认识、再深化;该课程是高一课程,学生习惯于直觉思维,感性认识要多一点,或者说学生正在初步接触和进行逻辑思维,处在由直观到精确、由感性到理性的认知水平的转化和提高过程中。故从这种意义看来,本单元课程不失为一个思维提升训练非常恰当的载体。

4.重点难点分析:本单元目的是在解析几何视角下完成直线上的点与方程的解的联系,直线上所有点与方程的所有解之间的联系,从而建立直线的方程,把直线问题转化为代数问题;处理代数问题;分析代数结果得几何含义,最终解决几何问题。由此说本单元的重点是直线的倾斜角与斜率、直线的方程、直线的交点坐标与距离公式,重点方法和思想是形成用代数方法解决几何问题的能力,体会数形结合的思想。

5.教材对比分析:现行教材都突出解析几何中坐标法的应用,强调数形结合思想在本章中的渗透,授课内容也都基本相同,但是有各自的特点,下面就人教A版和苏教版进行比较,如下图:

不管顺序怎么不同,各种教材都是根据学生的认知水平、遵循学生的认识规律的,我们不必过于拘泥于某种教材,而是根据自己学生的特点、认知水平,选择合适的教学手段和方法。

6.教学方式分析:可以灵活采用各种教学方法,我们学校主要采用五环节教学法,即师生共同探究、学生独立思考、小组合作交流、学生精彩展示和老师精彩点评五个环节。

三、教学流程设计

四、典型案例设计(略)

五、反思与改进

1.重视解析几何在高中数学中的指导性地位,要不失时机地渗透、巩固,加深学生对其重要性的认识 。2.把握教学中的“度”,最好不要在细枝末叶处“折腾”。3.进行单元教学设计可大可小,要用整体把握的观点指导教学。

式与方程教案【篇10】

《方程的认识》是小学数学中高年级教学内容中的一个“传统课题”。我设计本课所体现的教育理念是要让学生在广泛的探究时空中,在民主平等、轻松愉悦的氛围里,应用已有知识经验,通过观察比较、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程之间的关系,并能进行辨析。使学生学会用方程表示具体甚或情境中的等量关系,进一步感受数学与生活之间的密切联系。同时提高学生的观察能力、分析能力和解决实际问题的能力。初步建立分类的思想。

教学内容:《简易方程》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。

《方程的意义》对于儿童来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

学生情况:五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

1、知识与能力:使学生理解方程的概念,利用等量关系建立方程的模型,体会方程与等式的联系,从而培养学生观察、分析、比较、抽象、概括的能力。

2、过程与方法:经历观察、探索、概括的学习过程,训练思维条理性和概括性,渗透认识来源于实践的辨证唯物主义思想。

3、情感态度价值观:引导学生认识自我,建立信心。使学生获得数学是可以运用他们自己的经验去发现和再创造的积极的情感体验。

借助板书,认识等式。

一、情景引入,认识天平:

【出示天平】同学们,见过它吗?你们知道怎么用吗?(左右平衡)看哪知道左右相等了?因为实物太小了,我们用课件好吗?

二、体验感受,观察积累。

(一)我这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?(完善语言,三种情况:梨的质量大于一个苹果的质量天平向左倾斜;等于天平保持平衡;小于天平向右倾斜)

因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?(向右倾斜,也就是左右两边不相等)能用一个式子表示出这一状态吗?(60

师:如果在左边放上一个桃子会是什么情况?(因为桃子的质量不知道可能有三种情况)好,现在我告诉大家桃子质量是a克,用数学语言把你们认为天平的状态表达出来,写在本上。【师板书:60+a110】这几个式子各表示什么情况?

师:你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。好,我们把它放上,你看到的情况是怎样的?(天平平衡)能解释一下吗?(梨的重量加上桃子的重量正好是苹果的重量)

师:看看哪个式子表示这种情况?一起读出式子。说说这个式子表示什么?(左右两边相等)

【设计意图:通过呈现梨和苹果的重量使学生感受不平衡,再通过出示桃子这一不确定的质量引出猜测,从而得到加上一个量可以得到三个数学算式。】

(二)还是这架天平,刚才你们发现了平衡,现在我这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?(左边低)为什么?(果汁的重量大于牛奶的重量)那么你能让这架天平平衡吗?两个人一起说说,也可以用数学算式表达。

师:可以吗?谁能说清楚?【师板书500=125×4或500=125+125+125+125】

这是一种策略,改变右边的质量。受他的启发还有别的办法的吗?

方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办?(可以用字母表示),如果是这样的话会出现哪些情况?用数学算式表示说明,写在本子上。

指名展示【师板书:500-x 125】哪个式子表示了天平左右两边平衡了?500-x=125

【设计意图:通过一杯果汁与一罐酸奶的重量引出是天平从不平衡到平衡的转化过程是要在式子的一边发生变化,当变化过程中出现未知数时等式被称作方程,而不出现字母时等式存在但不是方程。同时使学生体会到减去一个不不确定的量也可能呈现三种关系式。】

(三)总结:像这样的两个式子表示了什么状态?(天平左右两边相等)下面的两个式子也表示天平左右两边相等呀,有什么不同吗?(式子中没有未知数)像这样的式子就是今天我们要研究的方程。【板书:方程的认识】

2.必须含有字母(未知数)。

【设计意图:揭示现象,把本质抛给学生去研究发现总结,培养学生的抽象概括能力。】

(四)试一试,观察天平判断是否可以写出方程,说明理由。(结合情境图)

(1)逐个呈现30+30+30+30=120天平保持平衡为什么不是方程?会不会是左边数字太多了?

(2)50+y,呈现50+y在天平左边,是不是因为这里不是x了,它就不是方程了?那为什么?(不是等式)出示80克的西瓜,现在呢?(50+y=80)

(3)先呈现2b

问:为什么不行?(不平衡)你的意思是说只要天平两边平衡了就一定能写出方程是吗?(不对)为什么?(在等式中还要有未知数)哦,我明白了,就是说不是所有的等式都是方程对吧?那所有的方程一定是等式这句话对不对?相互说说,有结果告诉我。(对,是方程就一定得是等式)

师:根据图上信息你能列出方程吗?为什么?(不能,50+x>80含有字母但不是等式)

【设计意图:通过直观的观察天平或跷跷板来使学生加深对方程的理解。进一步明确方程是基于等量关系式中的知道一部分,另一部分不知道而用字母表示的一种情况。】

一架小小的天平帮我们认识了等式,理解了方程,现实生活中不是所有的事情都可以放在天平上才找到相等的是不是?谁能用今天的方程表示以前我们都会解决的数学问题。

(x+30=38或38-x =30)一旦学生出现38-30= x,老师首先肯定,只不过它就像我们以前学过的算术方法了,想想是不是这样?这种方法我们大家都会,可是你看x+30=38这种方法根据老师一步一步的叙述就直接列出来了,这就是方程的方便之所在。

2.逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?(3a=180)

继续呈现2个篮球,每个90元。师:三个足球的价钱正好是这两个篮球的价钱。看看这次还能列出一个方程来吗?(3 a =2×90)

师:不错!你们运用了足球和篮球总价相等列出来了。受他的启发还能利用总价、数量、单价三者间的关系列出别的方程吗?(3a÷2=90)为什么,你怎样想的?(总价÷数量=单价)

师:真棒!好样的,人的大脑真是越用越灵活!希望大家都来多动脑思考问题。

(1)小芳一个星期共跑了2.8km,每天跑s米。

(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。

4.其实以往的数学题都存在着等量关系,想想看,下面的这条信息你能列出几个方程?【出示开放题】:小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。

60-2x=48 60-x=48+x (60-48)÷x=2 48+2x =60

根据不同的等量关系就可以列出不同的方程,今后我们就可以通过它来解决生活中比较复杂的问题了。

【设计意图:抛开天平做支撑让学生在现实情境中寻找等量关系,由一级运算到二级运算,再到两布计算的方程。层层深入,以递进的方式使学生认识方程应用的广泛性,为下一步解决实际问题奠定基础。】

数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?

60+a110 60

式与方程教案【篇11】

椭圆方程是代数学中的一个分支,它研究的是平面上满足特定关系的点的集合。在二维坐标平面中,椭圆方程给出了所有满足一定条件的点的集合,它是一种非常常见且重要的曲线类型。

椭圆方程的一般形式是(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是椭圆的横轴半径和纵轴半径。通过调整这些参数,我们可以得到各种不同形状和大小的椭圆。

首先让学生通过观察和分析,了解椭圆方程的几何意义。引导学生绘制不同参数的椭圆,并观察椭圆的特点。在此基础上,引导学生发现椭圆的对称性质,即椭圆关于两个坐标轴都具有对称性。通过实际绘制和观察,学生将更加直观地理解椭圆的特点。

介绍椭圆的离心率。椭圆的离心率 e 是一个重要的参数,它描述了椭圆形状的扁平程度。引导学生通过实际计算和观察,了解离心率与椭圆形状之间的关系。通过绘制多个椭圆,并观察离心率与椭圆长短轴之间的关系,学生将更加深入地理解离心率的概念。

在学生对椭圆的几何意义有一定了解后,引入椭圆方程的参数表示法。解释参数表示法的意义,并引导学生通过计算和构图,将参数表示法转化为一般形式的椭圆方程。通过大量的实例练习和讨论,培养学生对参数表示法和一般形式方程之间的转化能力。

然后,介绍椭圆方程的标准形式。椭圆方程也可以通过平移坐标轴的方式,转化为标准的形式。引导学生通过实际练习,将一般形式方程转化为标准形式,加深对椭圆方程标准形式的理解。

引入椭圆方程的应用领域。椭圆方程在物理、工程、经济等领域有着广泛的应用。通过引入实际案例,让学生了解椭圆方程在实际问题中的应用,培养学生将数学知识应用到实际问题中的能力。

通过以上的教学内容安排,学生将逐步了解和掌握椭圆方程的基本概念、几何意义、参数表示法、标准形式和应用领域。通过大量的实例练习和讨论,学生将培养数学思维和解决实际问题的能力。

本教案通过引导学生观察、分析和计算,使学生从几何意义、参数表示法、标准形式等多个方面全面了解椭圆方程。通过大量的实例练习和讨论,学生将掌握椭圆方程的基本概念和解题方法。在教学中,教师要注重培养学生的思维能力和实际问题解决能力,让学生在学习中能够灵活运用椭圆方程解决实际问题。通过本课的学习,相信学生能够对椭圆方程有更深入的理解,提高数学素养和解决实际问题的能力。

式与方程教案模板14篇


在某个重要场合,我们能够在许多地方看到祝福语。将我们的祝愿浓缩成一句祝福语。让他人感受到自己内心的祝福与问候。哪里有巧思的祝福语呢?下面是小编为大家整理的“式与方程教案模板14篇”,建议你收藏本页和本站,以便后续阅读!

式与方程教案【篇1】

教学目标

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

知识重点解方程的规范步骤

教学难点比较方程的解和解方程这两个概念的含义

教学过程教学方法和手段

引入

(1)上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。

(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。

教学过程一、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

二、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

三、方程的检验

P58例1P59例2。

怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

课堂练习独立完成练习十一第4题,强调书写格式。

小结与作业

课堂小结这节课你学到了什么?(1)解方程和方程的解有什么区别(2)解方程要按照什么样的格式来写?(3)如何检验呢?格式又是怎么样的?

课后追记

本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)

式与方程教案【篇2】

《解方程》教学设计 榆树林中心小学:李艳丽 课题:解方程

教学内容:教科书第57-58页 教学目标:

1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程和方程的解的概念。

2、培养学生的分析能力及应用所学知识解决实际问题的能力。

3、帮助学生养成自觉检验的良好习惯。

教学重点难点:利用天平平衡的道理理解并掌握解方程的方法及检验方法。理解方程的解和解方程的概念。教学用具:多媒体课件 教学过程:

一、复习导入:

1、出示复习题,指生进行判断下面各式是不是方程?

(1)5x+1=11

(2)8-3=5

(3)6-x

(4)3x+15

(6)18x=36

2、提问:什么是方程?方程和等式有什么关系?

二、教学新课

1、教学方程的解和解方程的概念。师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少? 生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。生1:我有办法,可以用250-100=150,所以X=150.生2:我有办法,因为100+150=250,所以X=150 生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150 师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)师:你能根据操作过程说出等式吗? 生:100+X-100=250-100(课件显示:100+X-100=250-100)师:这时天平表示未知数X的值是多少? 生:X=150(课件显示:X=150)

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示X=150的下画线)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)师:(课件显示:方框)100+X=250 100+X-100=250-100 指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。师:你们怎么理解这两个概念的?(学生独立思考,再在小组内交流。)师:谁来说说你想法? 生1:“解方程”是指演算过程 生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。师:“方程的解”和“解方程”的两个解有什么不同? 生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。师:下面我们就来做几道练习题,考一考大家。(出示课件)

(一)、判断题

(1)等式就是方程。

()(2)含有未知数的式子叫做方程。

()(3)方程一定是等式,等式不一定是方程。()(4)方程的解和解方程的意义相同。

()(5)X=3是方程5X=15的解。

()

(二)、完成填空。

(1)使方程左右两边相等的()叫做方程的解。(2)求方程的解的过程叫做()。

(3)比x多5的数是10。列方程为()(4)8与x的和是56。方程为()(5)比x少1.06的数是21.5。列方程为()。(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗? 生:会。

师:请自学第58页的例1的有关内容。

师:四人小组讨论方程左右两边为什么同时减3? [学生独立思考,再在小组内交流。] 师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)

师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)师:这时天平表示X的值是多少? 生:X=6(板书:X=6)

师:方程左右两边为什么同时减3? 生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢? 生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

3、教学例2(1)出示例2天平图

提问:怎样才能使天平左边只剩下X,而天平仍然平衡?

(2)学生思考后回答:方程两边同时除以3,左右两边仍然相等。教师演示过程。

(3)学生口述解方程过程,教师板书: 3X=18 解:3X÷3=18÷3 X=6(4)学生口述检验过程。

(5)如果方程两边同时加上或乘以同一个数(不为0),左右两边还相等吗?

4、小结:你会解方程了吗?解方程时需注意什么? 生述师演示解方程的步骤: a)先写“解:”。

b)方程左右两边同时加是一个相同的数,或减去一个相同的数,使方程左边只剩X,或乘上一个相同的数(0除外),方程左右两边相等。

或除以一个相同的数(0除外)c)求出X的值。d)注意“=”对齐。e)验算。

三、练习

师:现在老师看看同学们对于解方程掌握得怎么样。(出示课件)你会解下列方程吗?

X+3.2=4.6

x-108=4

x-2=15

1.6x=6.4

x÷7=0.3

x÷3=2.1(个别同学板演,集体订正)

四、全课小结,评价深化

通过今天的学习,同学们有哪些收获? ? [板书设计]

?

解方程

例1:书本图

X+3=9

验算:

3X=18 解:X+3-3 =9-3

方程左边= 6+3=9

解:

3X÷3=18÷3 X=6

方程右边= 9

X=6

方程左边=方程右边

所以,X=6是方程的解。

式与方程教案【篇3】

教学目标:

知识目标:理解与掌握方程的意义,弄清方程和等式两个概念的关系。

能力目标:培养学生认真观察、思考分析问题的能力。

情感目标:激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”;渗透数学来源于实际生活辩证唯物主义思想。

教学重点:理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。

教学难点:会用方程表示简单情境中的等量关系。

教学准备:教学课件。

教学流程:

一、导入新课:

教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。

二、探究新知:

(一)探究方程的意义:

介绍天平:(课件出示天平图)

天平实验,引出方程:

1、第一步,称出一只空杯子重100克;

第二步,往杯子里倒人约X克水,使天平出现倾斜。

第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)

第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?(100+x=250)

2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?

②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)

小结:像100+x=250这样的含有未知数的等式,称为方程。

3、深入探讨理解:

①根据方程的含义,方程应该具备哪些条件,

②方程与等式之间有什么关系,你能用集合图来表示吗?

写方程,加深对方程的认识:

三、练习巩固:

1、完成课本第54页做一做。在是方程的式子后面打上“√”。

判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

2、判断,对的在括号里打√,错的打×。

(1)等式都是方程,方程都是等式。()

(2)含有未知数的式子叫方程。()

(3)不是方程。()

3、用方程表示下面的等量关系。

(1)加上35等于91。(2)的3倍等于57。

(3)减31的差是86。(4)7.8除以等于1.3。

4、先说出下面题目中的数量间的相等关系,然后用方程表示出各题中数量间的相等关系。

(1)文具店原有乒乓球40筒,卖出χ筒,还剩18筒。

(2)某班有男生23人,女生χ人,共有50人。

(3)小红买了5支铅笔,每支χ元,共付9元。

(4)一头大象重5.1吨,一头牛重χ吨,这头牛比大象轻4.75吨。

(5)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。

5、开放题:妈妈生日到了,小明想用12元零花钱为妈妈买几枝康乃馨,康乃馨每枝X元,他的钱如果买4枝则多3.6元,如果买6枝则少0.6元。根据题目提供的信息,选择有用的条件,你能列几个方程?(同桌议一议)

四、课堂总结:

教师:想一想,这节课学习了什么?你有哪些收获?

课后反思:

学生对什么是方程都有所了解,本节课是成功的。

式与方程教案【篇4】

教学内容:

义务教育课程程标准实验教科书数学(人教版)小学数学第9册57—58页的内容。

教学目标:

1、通过学习,使学生知道解方程的方法有两种,并掌握这两种方法。

2、使学生初步掌握解方程,并理解解方程及方程的解的概念。

3、培养学生的分析能力应用所学知识解决实际问题的能力。

重点、难点:

1、理解并掌握解方程的方法。

2、理解解方程及方程的解的概念。

教学过程:

一、复习导入

二、探索新知,出示课本主题图(课件)

(1)根据图画列方程

(2)反馈:

a、X+3=9

b、9—X=3

C、9—3=X

(强调:列方程时X不单独出现在等号的一边,因为这样这个方程没有意义。)

(3)以X+3=9为例教学解方程

三、课堂练习:

1、完成做一做第一题。

2、解下列方程。(用两种方法解决)

四、课堂小结

这节课你有什么收获,跟你的同桌交流一下。

重点、难点:

理解并掌握解方程的方法。

教学过程:

一、复习铺垫

1、方程的意义

师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

生:含有未知数的等式叫方程。

2、判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=0。6

生:(1)(4)(6)是方程。

师:你为什么说这三个是方程呢?

生:因为它含有未知数,而且是等式。

二、探究新知

(一)理解方程的解和解方程

1、看图写方程

师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?

生:我知道杯子重100克,水重X克,合起来是250克。

师:你能根据这幅图列出方程吗?

生:100+X=250。

2、求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

生1:根据加减法之间的关系250-100=150,所以X=150。

生2:根据数的组成100+150=250,所以X=150。

生3:100+X=250=100+150,所以X=150。

生4:假如在方程左右两边同时减去100,那么也可得出X=150。

3、验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

学生自学后汇报。(板书)齐读两个概念。

4、辨析方程的解和解方程两个概念

师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

生:要看这个数能不能使方程左右两边相等。

师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

5、巩固练习,加深理解。

师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

(二)解简易方程

1、复习等式的性质

师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

(1)如果5+3=8,那么5+3-3=8()

(2)如果50-13=37,那么50-13+13=50()

(3)如果a-7=8,那么a-7+7=8()

(4)如果X+9=45,那么X+9-9=45()

师:你是根据什么填空的?

生:等式的性质。

师:等式有什么性质呢?我们齐来说一遍。

2、理解方程与等式的联系,引出课题。

师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。

3、出示例1图,列出方程。

师:图上画的是什么?你能列出方程吗?

式与方程教案【篇5】

教学内容:六年级下册整理与反思之《式与方程》

教学目标:

1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何图形的周长、面积、体积等公式。

2、明确方程、解方程和方程解的概念,弄清楚方程与等式的区别。

3、正确理解方程的含义,能熟练地解简易方程。

教学重点:

明确字母表示数的意义和作用;理解方程的相关概念;熟练地解建简易方程。

教学难点:

明确等式与方程的区别,能熟练解简易方程。

教学具准备:

多媒体课件等。

教学过程:

一、导学设疑,揭示课题

1、出示:CCTV、SOS、UFO、NBA、CS、ATM、VIP师:看到这些字母你立刻想到了什么?

同学们的课外知识真丰富,那么我们今天要学习的课内知识相信大家也一定能学会。

2、今天我们就围绕字母所涉及到的式与方程的知识进行整理与反思。(板书课题)

二、自学质疑,沟通联系

1、同学们先想一想,在我们小学六年的数学学习中,用字母都表示过什么呢?

出示问题后,汇报交流大家都想好了吗?谁来说说?

(1)根据回答板书:用字母表示数量关系。

接着让学生举例来说明,师根据学生的回答板书:s=vt还可以表示什么呢?(2)板书:表示计算公式。你能举个例子吗?根据回答板书:s=ahc=4a用字母表示平面图形计算公式

正方形、长方形、平行四边形、三角形、梯形和圆形的相关计算公式。用字母表示立体图形体积计算公式

正方体、长方体、圆柱、圆锥的体积公式。在简写时我们要注意什么呢?(点名回答)

师鼓励:他说得太精彩了,大家不要吝啬自己的掌声哦!

想一想:在一个含有字母的乘法式子里,数字与字母,字母与字母相乘时,怎样正确规范地书写呢?(出示温馨提示)

刚才我们用字母表示了数量关系、计算公式,字母还可以表示什么呢?(还可以用

字母表示运算定律。)

(3)请同学们说出所学过的用字母表示的运算定律。(PPT展示)看来小小的字母在我们的数学课堂上用途还真不少!大家觉得用字母表示数有什么好处?(用字母表示数,比较简洁明了。)

小结:正因为用字母表示数简明易记,所以生活中很多数学现象人们都喜欢用字母来表示。(请看大屏幕)

三、展学释疑,巩固练习

1、用含有字母的式子表示下面的数量。

1)一只青蛙每天吃a只害虫,100天吃掉()只害虫。2)小明今年b岁,再过十年是()岁。3)一堆货物x吨,运走24吨,还剩()吨。

4)水果店有x千克苹果,一共装6箱,平均每箱装()千克。5)m表示一个偶数,与他相邻的两个偶数是()和()。

小结:通过上面的练习,我们感受到用字母表示数应用很广泛,表达很简洁,有很强的概括性。在你们未来的学习中,数字会越来越少,字母会越来越多,同学们可以使用这些简洁的字母使你的学习越来越轻松。

下面我们就来看一下用字母表示的这些式子分别代表什么意义!

2、学校买来9个足球,每个ɑ元,又买来b个篮球,每个58元。9ɑ表示()58b表示()58-ɑ表示()9ɑ+58b表示()如果ɑ=45,b=6,则9ɑ+58b=()

四、自学质疑,建构体系

1、学习了用字母表示数后,我们还一起认识了方程。

出示问题:什么是方程?方程与等式有什么关系?(介绍两者的练习与区别)请用自己喜欢的表达方式来说说方程与等式的关系。

我们可以用一句话概括:方程一定是等式,但等式不一定是方程。也可以用集合的形式来描述。

2、如果给你一些式子,你能判断它是不是方程吗?(出示练习题)1①4+0.7X=102②X-0.25=③30a+5b④7X-6<36

4X21⑤55X=Y⑥

=30%⑦1÷8=0.125⑧X+X=42

432在判断一个等式是否是方程时,需要特别关注什么?

(在判断一个等式是否是方程时,需要特别关注等式中是否含有未知数,含有未知数的等式,就一定是方程。)

3、你会解这些方程吗?(独立完成)

刚才在解方程时运用了哪些知识?(解方程时应用了等式的性质)

4、等式的性质有哪些?怎么样应用等式的性质解方程?

出示等式的性质:

①等式两边同时加上或减去同一个数,等式仍然成立;

②等式两边同时乘以或除以同一个数(除数不能为零),等式仍然成立。

小结:一般根据等式的基本性质来解方程。还可以根据加减法之间、乘除法之间的互逆关系来解方程。

五、用学生疑,总结延续这节课我们一起回顾、整理了很多式与方程的知识,收获知识不是最快乐的,用我们收获的知识去解决无数的数学问题才是我们学习数学的最大乐趣。你们说对不对?希望同学们能够用我们整理的知识去解决生活中更多的实际问题。

式与方程教案【篇6】

教学目标:

1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.

2.领悟到解方程作为运用方程解决实际问题的组成部分.

3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.

4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践. 教学重点:正确去括号解方程

教学难点:去括号法则和分配律的正确使用.

教学方法:引导发现

教学设计:

一、引入:

(读教材156页引例)

引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.

学生观看画面:两名同学到商店买饮料的情景.

如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3

教师组织学生讨论.

教材“想一想”中的内容:首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.

①学生研讨并交流各自解决问题的过程.

②学生独立完成“想一想”中的问题(2).

二、出示例题3并引导学生探讨问题的解决方法.

引导学生对自己所列方程的解的实际意义进行解释.

出示随堂练习题,鼓励学生大胆互评.

①独立完成随堂练习.

③四名同学板演.

③纠正板演中的错误并总结注意事项.

1、自主完成例题

2、小组内交流各自解方程的方法.

3、总结数学思想.

三、出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)

1、自主完成例题

2、小组内交流各自解方程的方法.

3、总结数学思想.

四、出示随堂练习题.

①独立完成练习题.

②同桌互相检查.

出示自编练习题:下面方程的解法对不对?如果不对应怎样改正?

①解方程:2(x+3)-5(1-x)=3(x-1)

②解方程:6(x+8)一6=0

①小组间比赛找错误.

②讨论交流各自看法.

③选代表说出错误的原因,并总结解本节所学方程的注意事项.

五、小结

1、做出本节课小结并交流.

2、说出自己的收获.

给予评价:

引导学生做出本节课小结.

七、板书设计

八、教学后记

式与方程教案【篇7】

教学内容:

教学目标:

1、帮助学生整理式与方程的知识体系,学会用字母表示数,体会用字母表示的简洁性。

2、理解方程的含义,会熟练地解简易方程,初步沟通算式、代数式、具体数量之间的关系。

3、进一步理解基本的数量关系,会根据实际情况选用方程解决问题,提高学生的方程及代数意识。

教学重点:明确字母表示数的意义和作用;会灵活的用方程解答实际问题。

教学难点:找等量关系式,用方程解决实际问题。

教学过程:

一、谈话引入,揭示课题

今天我们来复习“式与方程”。看到这课题,你想到了哪些知识?(用字母表示数,解方程,用方程解决问题)

二、复习用字母表示数

1。用字母表示数。

①1,2,3,4,5,6……可以用哪个数来表示?x

②4,8,12,16,20,24……可以用哪个数来表示?4x

师:4x与x有什么关系呢?4x表示x的4倍

“2x+4”呢?“x÷2—4”呢?

小结:我们要弄懂含有字母式子的含义,含有字母的式子可以表示一个数,而这个数与这个字母有着一定关系。

2。做一做。字母a来表示一个数,你能根据不同关系的表述分别写出另一个数吗?

一个数另一个数

a比a多2的数a+2

比a少2的数a—2

2个a相加是多少?2a

2个a相乘是多少?a2

a的2倍2a

a的一半a÷2

学生独立完成,汇报结果。

2a与a2有什么区别?用字母表示数要注意什么?

三、复习方程与解方程

(1)如果黑板上的三个式子:“4x”“2x+4”“x÷2—4”的结果都是60,那么这些式子就都等于多少呢?

像这样的等式数学上叫做什么?(方程)

什么叫方程?(含有未知数的等式叫方程)

(2)学生独立练习解上述三个方程,完成后校对讲评。

四、复习用方程解决问题

1。根据上述三个方程,编解决问题。

(1)根据4x=60,你想到了什么数学问题?

①小明骑自行车4小时行了60千米,平均每小时行了多少千米?

解:设平均每小时行了x千米。4x=60

②一个正方形的周长是60厘米,它的边长是多少?

解:设它的边长为x厘米。4x=60

师:列方程的依据是什么?

(2)根据2x+4=60,你想到了什么数学问题?

①甲筐有苹果60千克,,乙筐有苹果多少千克?

解:设乙筐有苹果x千克。列出方程是:2x+4=60。

师:你能根据方程,补上相应的条件吗?(甲筐是乙筐的2倍还多4千克)

②如果要列出x÷2—4=60的方程,可以把哪句话改一改?怎么改?

“甲筐是乙筐的2倍还多4千克”改为“甲筐是乙筐的一半还少4千克”

师:刚刚补上的两个条件,正是在列方程时要用到的关键句,知道什么叫关键句吗?

师:从这句话中可以找到数量关系,列出方程。

2。复习用方程解决问题的一般步骤。

小明和小刚两家相距425米。两人同时从家出发,经过2。5分钟后能在途中相遇。小明每分钟走75米.小刚每分钟走多少米?(用方程解答)

(1)学生独立解答,指明板演,集体校对。

(2)用方程解决问题时要做到哪几步?

一般步骤:①读懂题意;②设未知数;③找出等量关系;④列出方程;⑤解方程:⑥检验得数。

师:在这六步中你们认为哪一步是最重要的?

3。对比质疑突出优化。

(1)陈老师为学校买了8个篮球,12个足球,共用去760元。已知篮球每个32元。足球每个多少元?(用方程解答,方法越多越好)

学生独立解答,集体分析校对。

①8×32+12x=760“篮球的总价+足球的总价=两种球的总价”

②760—12x=8×32;“篮球的总价相等”

③(760—12x)÷8=32;“篮球的单价相等”

④(760—12x)—32=8;“篮球的个数相等”

⑤(760一32×8)÷x=12“足球的个数相等”

师:根据以上五个等量关系列出的方程,你们觉得最容易找到等量关系的是哪一个?

师:根据每个人的理解,能较快地找到等量关系列出方程的都应该是可以的。但如果你所列出的方程计算比较麻烦.就要继续调整,找出其他的等量关系来列方程.像上题通常容易想到的是按“总价相等”来列出方程。

(2)选择合适的方法解决。

①陈老师为学校买8个篮球,每个32元;买了若干个足球。每个42元;买这两种球共付了760元,问足球买了多少个?

②陈老师为学校买了8个篮球。每个32元;12个足球,每个42元。问共要付多少元?

小结:②顺向思考题通常用算术法,①逆向的,较难的用方程比较简单。

五、课堂小结

今天我们学习了什么内容?你有哪些收获?还有什么疑惑?

式与方程教案【篇8】

教学目标:

1.经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解并掌握如何去分母的解题方法.

2.通过解方程时去分母过程,体会转化思想.

3.进一步体会解方程方法的灵活多样.培养解决不同问题的能力.

4.培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神. 教学重点:解方程时如何去分母.

教学难点:解方程时如何去分母.

教学方法:引导发现

教学设计:

一、用小黑板出示一组解方程的练习题.

解方程:

(1)8=7-2y;

(3)4x-3(20-x)=3;

1、自主完成解题.

2、同桌互批.

3、哪组同学全对人数多.

(根据学生做题情况,教师给予评价).

二、出示例题7,鼓励学生到黑板板演,教师给予评价.

一名同学板演,其余同学在练习本上做.

针对学生的实际,教师有目的引导学生如何去掉分母.去分母时要引导学生规范步骤,准确运算.

三、组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤. 分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母.

四、出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程.

出示快速抢答题:有几处错误,请把它们—一找出来并改正.

①先自己总结.

②互相交流自己的结论,并用语言表述出来.

教师给予评价.

引导学生总结本节的学习内容及方法.

五、出示随堂练习题(根据学生情况做部分题或全部题).

①自主完成解方程

②互相交流自己的结论,并用语言表述出来.

③自觉检验方程的解是否正确.

(选代表到黑板板演).

①学生抢答.

②同组补充不完整的地方.

③交流总结方程变形时容易出现的错误.

①独立完成解方程.

②小组互评,评出做得好的同学.

六、小结

①做出本节课小结共交流.

(2)5x-2=7x+8; (4)-2(x-2)=12.

②说出自己的收获及最困惑的地方

八、板书设计

式与方程教案【篇9】

一、素质教育目标

(一)知识教学点

1、已知反应物的质量求生成物的质量;

2、已知生成物的质量求反应物的质量;

3、已知一种反应物的质量求另一种反应物的质量;

4、已知一种生成物的质量求另一种生成物的质量。

(二)能力训练点

通过化学方程式的计算,加深理解化学方程式的含义,培养学生按照化学进行思维的良好习惯,进一步培养学生的审题能力,分析能力和计算能力。

(三)德育渗透点

通过有关化学方程式含义的分析及其计算,培养学生学以致用,联系实际风。同时认识到定量和定性研究物质及变化规律是相辅相成的,质和量是的辩证观点。

二、教学重点、难点、疑点及解决办法

1、重点

由一种反应物(或生成物)的质量求生成物(或反应物)的质量。

2、难点

训练生培养学生按照化学特点去思维的科学方法。

3、疑点

为什么说化学知识是化学计算的基础,化学方程式是化学计算的依据?

4、解决办法

采用讲练结合、以练为主的方法,调动学生的积极性,通过由易到难的习题和一题多解的训练,开阔思路,提高解题技巧,培养思维能力,加深对化学知识的认识和理解。

三、课时安排

2课时

四、教具准备

幻灯

五、学生活动设计

1、教师提问

(1)什么是化学方程式?

点燃

(2)说出此化学方程式:4P+5O2========== 2P205表示的意义。

[目的]使学生熟悉明确化学方程式的概念、含义。

2、教师分析课本第74页[例题1],并提问。

根据[例题1)你能说出根据化学方程式计算的解题步骤可分为哪几步?

[目的]结合实例、给予点拨、启迪学生思维,启发学生按化学特点去思维的良好习惯。

3、教师提问,学生自学课本第74页[例题2)。

根据例题进一步总结归纳出根据化学方程式计算一般步骤和方法。

然后相邻座位学生互相讨论,在教师引导下得出结论。

[目的]要求学生严格按照一定的格式来解题,培养学生审题能力和分析能力。

4、教师给出两道练习题,学生练习并组织讨论指出错误。

(1)归纳出根据化学方程式计算的类型。

(2)根据练习你认为什么是化学计算的基础?什么是化学计算的工具?什么是化学计算的依据?

[目的]加深理解,培养归纳和概括能力。

5、教师给出由易到难的题组和一题多解进行练习,并分组讨论。

(1)根据化学方程式计算的三个要领是什么?

(2)根据化学方程式计算的三个关键是什么?

式与方程教案【篇10】

教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。

教学目标:

1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。

2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。

教学重点:

能正确地用含有字母的式子表示数量及数量关系、计算公式。

教学难点:

会用等式的性质解一些简单的方程。

教学准备:多媒体

教学过程:

一、整理与反思

今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。

师:你能自己举出一些用字母表示数的例子吗?

长方形的周长C=2(a+b)

加法交换率a+b=b+a……

师:什么叫方程?方程与等式有什么联系和区别?

(1)教师引导:含有字母的等式叫方程。

(2)表示相等的式子叫等式。方程是含有字母的等式。

师长:你知道等式有哪些性质?举例说一说。

强调:0除外

教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。

二、练习与实践

1.在括号里写出含有字母的式子

(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去()元;小明买n张这样的贺卡,付出10元,应找回()元。

(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。

2.第2题

(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?

(2)说说解答每题时应注意什么?

3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

学生交流、完成

4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

学生交流、完成

5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

学生交流、完成

4.第6题

强调:根据题目的情况,合理选择方法,列算式或列方程

三、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

四、作业

完成《练习与测试》相关作业。

式与方程教案【篇11】

教学内容:义务教育课程标准实验教科书数学五年级上册55—57页内容。

教学目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

教学重点:理解方程的解和解方程的含义,会检验方程的解。

教学难点:利用天平平衡的原理来检验方程的解。

关键:天平与方程的联系。

教具 : 图片,课件

教学过程:

一、 回顾旧知,引出课题(出示课件)

1、实物演示:天平平衡的实验。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

二、探究新知

1。认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

师:这时天平表示未知数X的值是多少?

生:X=150

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2。教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的'意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

三、巩固练习

师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

四、课堂小结:解含有加法方程的步骤。(出示课件)

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

式与方程教案【篇12】

教学目标

知识目标

学生理解化学方程式在“质”和“量”两个方面的涵义,理解书写化学方程式必须遵守的两个原则;

通过练习、讨论,初步学会配平化学方程式的一种方法——最小公倍数法;

能正确书写简单的化学方程式。

能力目标

培养学生的自学能力和逻辑思维能力。

情感目标

培养学生实事求是的科学态度,勇于探究及合作精神。

教学建议

教材分析

1.化学方程式是用化学式来描述化学反应的式子。其含义有二,其一可以表明反应物、生成物是什么,其二表示各物质之间的质量关系,书写化学方程式必须依据的原则:

①客观性原则—以客观事实为基础,绝不能凭空设想、随意臆造事实上不存在的物质和化学反应。

②遵守质量守恒定律—参加化学反应的各物质的质量总和,等于反应后生成的各物质的质量总和,书写化学方程式应遵循一定的顺序,才能保证正确。其顺序一般为:“反应物”→“—” →“反应条件” →“生成物” →“↑或↓” →“配平” →“=”。

2.配平是书写化学方程式的难点,配平是通过在化学式前加系数来使化学方程式等号两边各元素的原子个数相等,以确保遵守质量守恒定律。配平的方法有多种,如奇偶法、观察法、最小公倍数法。

3.书写化学方程式为了能顺利地写出反应物或生成物,应力求结合化学方程式所表示的化学反应现象来记忆。例如,镁在空气中燃烧。实验现象为,银白色的镁带在空气中燃烧,发出耀眼的强光,生成白色粉末。白色粉末为氧化镁(),反应条件为点燃。因此,此反应的反应式为

有些化学方程式可以借助于反应规律来书写、记忆。例如,酸、碱、盐之间的反应,因为有规律可循,所以根据反应规律书写比较容易。例如酸与碱发生复分解反应,两两相互交换成分,生成两种新的化合物—盐和水。以硫酸跟氢氧化钠反应为例。反应方程式为:

教法建议

学生在学习了元素符号、化学式、化学反应的实质,知道了一些化学反应和它们的文字表达式后,结合上一节学到的质量守恒定律,已经具备了学习化学方程式的基础。

本节教学可结合实际对课本内容和顺序做一些调整和改进。注意引导学生发现问题,通过独立思考和相互讨论去分析、解决问题,创设生动活泼、民主宽松又紧张有序的学习气氛。

教学时要围绕重点,突破难点,突出教师主导和学生主体的“双为主”作用。具体设计如下:

1、复习。旧知识是学习新知识的基础,培养学生建立新旧知识间联系的'意识。其中质量守恒定律及质量守恒的微观解释是最为重要的:化学方程式体现出质量守恒,而其微观解释又是配平的依据。

2、概念和涵义,以最简单的碳在氧气中燃烧生成二氧化碳的反应为例,学生写:碳+氧气―→二氧化碳,老师写出C + O2 — CO2,引导学生通过与反应的文字表达式比较而得出概念。为加深理解,又以 S + O 2 — SO2的反应强化,引导学生从特殊→一般,概括出化学方程式的涵义。

3、书写原则和配平(书写原则:1. 依据客观事实;2. 遵循质量守恒定律)。学生常抛开原则写出错误的化学方程式,为强化二者关系,可采用练习、自学→发现问题―→探讨分析提出解决方法―→上升到理论―→实践练习的模式。

4、书写步骤。在学生探索、练习的基础上,以学生熟悉的用氯酸钾制氧气的化学反应方程式书写为练习,巩固配平方法,使学生体会书写化学方程式的步骤。通过练习发现问题,提出改进,并由学生总结步骤。教师板书时再次强化必须遵守的两个原则。

5、小结在学生思考后进行,目的是培养学生良好的学习习惯,使知识系统化。

6、检查学习效果,进行检测练习。由学生相互评判、分析,鼓励学生敢于质疑、发散思维、求异思维,以培养学生的创新意识。

布置作业后,教师再“画龙点睛”式的强调重点,并引出本课知识与下节课知识的关系,为学新知识做好铺垫,使学生再次体会新旧知识的密切联系,巩固学习的积极性。

教学设计方案

重点:化学方程式的涵义及写法

难点:化学方程式的配平

式与方程教案【篇13】

1.地位与作用:

本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。

本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。

2.教材处理顺序

教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。教材在本节内容中只研究了中心在原点,焦点在 轴上的椭圆的标准方程,让学生自己去归纳焦点在 轴上的椭圆的标准方程。这样的处理给学生提供了一次探究和交流的机会。有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。

3.数学思想方法

本节内容蕴含了:数形结合思想、转化化归思想等。在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。

1.教学目标

(1) 知识与技能目标:①理解椭圆的定义;②掌握的椭圆的标准方程。

(2) 过程与方法目标:①在椭圆定义的获知和归纳中,进一步渗透数形结合的数学思想方法;②通过椭圆标准方程的推导过程,巩固用坐标化的方法求动点的轨迹方程,同时体会含有两个根式的化简思路。

(3) 情感、态度和价值观:①通过椭圆定义的归纳,培养学生发现规律,认识规律并利用规律解决实际问题的能力;②通过师生、生生合作学习,增强学生团队协作能力,增强主动与他人合作交流的意识。

2.教学重点

(1) 掌握椭圆的定义与相关概念;

(2) 掌握椭圆的标准方程。

3.教学难点

椭圆标准方程的推导。

1.学生已有的认知基础

授课班级学生为高二年级学生。

椭圆是圆锥曲线中基础且重要的一种图形,在实际生活中经常遇到。学生在高一对解析几何有了初步的了解和认识,对于在平面直角坐标系下的点坐标及长度公式已掌握,具有一定的空间想象能力、抽象概括能力和推理运算的技能,有较好的学习习惯和方法。

2.学生存在的难点

学生在涉及到需要自己建立坐标系,再研究推导出方程仍是一个难点。且之前未接触过一个式子中含两个根式相加的情况,故化简是个问题。

3.突破策略

由教师引领学生观察所绘出的椭圆的特点,定点位置,从而建立合适的直角坐标系。

1.内容突破策略

本节课新知内容分两大板块:一是总结概括出椭圆的定义;二是推导出椭圆的标准方程。针对第一板块内容,主要采取学生先动手画椭圆,在实践的过程中发现一些固定不变的量和量与量之间存在的关系,从而总结出椭圆的定义,并且深刻领悟定义中所说的一些特别要求。针对第二板块内容,主要是采取教师引导,学生动手,通过一般的求动点轨迹的方法推导出椭圆的标准方程,符合学生的认知规律。

2.启迪学生思维策略:

在教学方法的选择上,采用教师组织引导,学生动手实践、自主探究、合作交流的学习方式,力求体现教师的引导者、合作者的作用,突出学生的主体地位。

教学过程

设计意图

一、创设情景,导入新课

1.让学生观察几张典型图片和行星在太阳系中的运动轨迹,由此看出一个共同的数学图形“椭圆”。

2.大家还能举出生活中你所遇到的椭圆吗?

3.用多媒体演示一个嫦娥三号运行椭圆形轨道的例子。

1.使学生对椭圆有一个感性认识,明白生活实践中有许多数学问题,数学来源于实践,同时培养学生学会用数学的眼光去观察周围事物的能力。

2.通过提问激发学生课堂上的学习兴趣。

二、椭圆的定义(分四个环节)

1.画一画(画椭圆)

①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?

(由学生动手在黑板上进行演示,提高学生的动手能力,同时激起学生学习本节课的兴趣)

②而将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么?

(教师提问,让学生动手,拿出提前准备好的毛线,两组同学上黑板画,其他同学同桌合作在练习本上画)

动画演示作图过程

2.认一认(实验总结)

提出问题:①作图过程中,哪些量没有变?哪些量变了?

提出问题:②为什么要求作图过程中笔尖要绷紧?

提出问题:③笔尖所对应的动点M到定点的距离有什么长度之间的关系?

总结:笔尖对应的动点M到直线两个端点的长度之和固定不变。

3.说一说(总结定义)

提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)

我们把平面内到两个定点 , 的距离之和等于常数(大于 )的点的集合叫作椭圆。

问题1:定义中的常数等于 ,则动点的轨迹是什么?

问题2:定义中的常数小于 ,则动点的轨迹是什么?

4.椭圆相关概念:两个定点 , 叫作椭圆的焦点,两个焦点 , 间的距离叫作椭圆的焦距。

1.给学生提供一个动手、动脑的学习机会;

2.学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识。

3.通过三个问题的设置,为学生从画法中发现抛物线的几何特征奠定基础。

4.通过三个典型的问题,让学生更深刻地理解椭圆的定义

5.使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风。

三、椭圆的标准方程

1.求一求(推导椭圆的标准方程)

问题3:回顾圆的轨迹方程是如何求的?

①建系: ②设点:

③列式: 得: ④化简:

问题4:以怎样的建系方式,哪一种针对求椭圆的标准方程比较好?

(补充说明:椭圆具有一定的对称美,故所求的式子最好简洁工整)

动手演算:让学生动手,求推导焦点在 轴上的椭圆的标准方程

①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)

以直线 为 轴,以线段 的垂直平分线为 轴,建

立平面直角坐标系.

②设点:设焦距为 ,则 .设 为椭圆上任意一点,点 与点 的距离之和为 .

③列式:动点 满足的几何约束条件:

坐标化为:

④化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号

预案一:移项后两次平方法

两边同时平方、整理得:

将上式两边平方、整理得:

分析 的几何含义,令

得到焦点在 轴上的椭圆的标准方程为

预案二:

用等差数列法:

得4cx=4at,即t=

将t= 代入 式得

将③式两边平方得出结论。以下同预案一

预案三:三角换元法:

即 即

代入 式得

以下同预案一

2.问一问

问题5 :焦点在 轴上的椭圆的标准方程是什么?

(由学生动手列式, ,引导学生观察焦点在 轴上与焦点在 轴上式子的差异,从而用类比的方法得到焦点在 轴上椭圆的标准方程)

如果椭圆的焦点在 轴上,其焦点坐标为 , ,用同样的方法可以推出它的标准方程

问题6:如何用几何图形解释 ? , , 在椭圆中分别表示哪些线段的长?

1.让学生由圆的标准方程的推导过程,类比的推导椭圆的标准方程。

2.椭圆方程不止一种,建立的坐标系不同,椭圆方程的表达形式也不同,在高中阶段只掌握焦点在坐标轴上的椭圆的标准方程。

3.进一步熟悉用坐标法求动点轨迹方程的方法,掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神,感受数学的简洁美、对称美

4.数形结合的思想的灵活应用,进一步深化巩固数学思想方法

做好准备,以备个别学生想到此种方法

四、课堂探究

探究一:判断分别满足下列条件的动点 的轨迹是否为椭圆

(1)到点 和点 的距离之和为6的点的轨迹;(是)

(2)到点 和点 的距离之和为4的点的轨迹; (不是)

(3)到点 和点 的距离之和为3的点的轨迹; (不是)

(4).已知椭圆的标准方程为 ,请填空:a=_____,b=_____,c=_____,焦点坐标为_________________,焦距等于_________.

探究二:判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标

(1) ;(在 轴上,焦点为 , )

(2) ;(在 轴上,焦点为 , )

(3) 。(在 轴上,焦点为 , )

1.巩固椭圆的定义

2.通过本题的练习,使学生能加深椭圆的焦距与标准方程之间关系的理解,同时会求标准方程的基本量,教学时应引导学生逐层深入,养成求椭圆标准方程先看焦点位置的良好习惯。

五、课堂小结

问题:这节课你学到了什么?请谈谈你的收获.

1.知识内容收获:一个定义(椭圆的定义);两个方程(椭圆的两种标准方程);及椭圆中 之间的关系。

2.学习过程收获:①巩固了动点的轨迹方程的求法;②通过推导椭圆的标准方程的过程,学会了两个根式相加的式子的化简方法,同时提高了自己的运算能力。

3.数学思想和方法:数形结合思想;转化化归思想;分类讨论思想。

目的:培养学生的概括总结能力

六、课后巩固练习

1.课后思考:当把椭圆的两个焦点合二为一了后,得到的图形是什么?你能总结出什么样的规律?

2.书面作业:

课本 练习2: 1, 2, 3

是对本节课新知内容及学习方法的巩固,同时启发学生思考,让学生更有兴趣继续研究椭圆

七、板书设计

椭圆及其标准方程

一、画椭圆

二、定义:

注明:①若 ,则点的轨迹不存在;

②若 ,则轨迹为线段

三、椭圆的标准方程

焦点在 轴上时,

焦点在 轴上时,

八、设计感想

上本节课前本人阅读了大量圆锥曲线的知识,对各种不同的椭圆定义引题进行了分析比较,通过各位同事耐心的指导和多次的讨论,最终采用了以现实生活中椭圆的应用引入,充分展现了知识的形成过程,有利于学生自主探究与创新意识的培养。但在设计过程仍遇到很多我无法解决的问题,比如如何将圆锥曲线背景知识融入到课堂;如何用几何画板将纸张的翻折更形象的演示等等。如何加以改进,这是在后续教学中需要思考的问题。这也反映了我在新课程面前的不足,认识到教师自身专业发展与能力提高的重要性与紧迫感;认识到新课程下的教师不再是静态的蜡烛、明灯抑或是航标,而是一名充满激情的主持人,一名锐意进取的先行者这样一个角色的转换;认识到新课改的成功要从我做起,从现在做起!

式与方程教案【篇14】

尊敬的各位领导、各位老师:

大家好!

我说课的题目是《方程的意义》。我将从学情分析、教材分析、教学流程三个方面进行说课:

一、学情分析

《方程的意义》对于儿童来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

二、教材分析(出示教材图)

方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量间的关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。教材在编排上注重让学生根据具体的情景根据各个天平的状态,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。

人教版教材《方程的意义》教材内容选自义务教育课程标准实验教科书(人教版)五年级(上册)第53页——54页。做一做。练习十一1——3题。教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。

为提供更为丰富的感知材料,教材提出:你会自己写出一些方程吗?然后通过三位小朋友在黑板上写方程的插图,让学生初步感知方程的多样性。

在“做一做”里,教材给出了6个式子,让学生识别哪些是方程。要让学生明白,未知数还可以用不同的字母表示。

“你知道吗”的阅读材料,简要介绍了有关方程的一些史料。通过让学生阅读,了解一些有关方程的历史和发展。

冀教版教材《方程的意义》是学生已学过整数四则运算法则和定律,掌握了用字母表示数的基础上进行教学的,同时又是即将学习的“解方程”的基础。教材选择了天平这个直观教具,提出了“观察天平图、用式子表示天平两边物体质量关系”的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。教学“方程的意义”,并非让学生简单地认识方程的外形特征——“含有未知数的等式”,而是要让学生体会方程的本质特征——揭示事件中最主要的数量关系。揭示“方程的意义”,必须借助于学生的日常生活经验,利用具体的问题情境去帮助学生寻找相应的等量关系,构建“方程”的概念。基于以上分析,我确定本节课的教学目标如下:

1、认知目标:结合天平示意图,在观察、用式子表示数量关系、归纳、类比等活动中,经历认识等式和方程的过程。

2、能力目标:了解等式和方程的意义,能判断哪些是等式、哪些是方程,能根据具体情境列出方程。

3、情感目标:主动参与学习活动,获得积极的学习体验,激发学习新知识的兴趣。

教学重点:掌握“方程”、“等式”的意义。

教学难点:理解“等式”与“方程”之间的关系。

三、教学流程:

本节课我安排了五个环节:

一、口算练习。

这些练习题主要依据的是教研室提供的题目,一共30道口算题。训练的目的就是要提高学生的口头计算能力和计算技巧。时间2分钟,做对20道题的得满分,多者加分,少则扣分。

二、创设情境,抽象出等量关系。

目的在于激发学生的学习兴趣,提高课堂学习质量。因此创设情境要具有简洁性、趣味性和问题性。

1、提出问题:老师这里有一本字典和一本数学书,大家来猜一猜哪个重一些?可以掂一掂再来猜。

(说明:师生进行猜质量的活动,既激发学生参与的兴趣,又为下面的学习创造素材。)

怎样才能验证刚才估测的结果呢?(用秤称或用其它方法称出物体的质量)非要称出它们的具体重量吗?(学生充分说完引出天平测量)

2、小结:也就是说天平平衡了,两边的物品重量就是相等的,是这样吗?天平就是利用这个特性,把其中的一边换成了有具体重量的砝码就可以知道中一边物品的重量了。今天我们就利用天平这个我们都非常熟悉的测量工具来学习方程的意义。

(在课的开始,我就从学生的生活经验出发,让他们说说见过的称物体重量的工具,顺势提出天平,介绍天平。从中感知“数学来源于生活”的道理,把新知建立在学生已有的知识经验的基础之上,不至于拔高起点。)

三、自主探究。

由于学生对天平以及天平的用法并不陌生,所以接下来我安排了两个活动。

导学一:

1、观察六幅天平示意图,你能用式子表示天平两边的数量关系吗?

在这里我首先利用课件出示第一幅天平示意图,引导学生用式子表示天平两边的数量关系。重点观察天平左右两边砝码的质量和天平此时所处的状态。由于学生已经有了使用天平的经验,大多数学生能够正确写出关系式的,如果有个别学生有困难就得需要同学的帮扶老师的指导了。接下来我会利用课件把其余五幅天平示意图全部出示出来,引导学生观察每个天平左右两边砝码的质量和此时天平所处的状态。重点引导学生观察每个天平左右两边砝码的质量都是用什么数表示的,还有此时每个天平所处的状态有什么不同,然后再引导学生写出关系式。问题预设:由于有了前面的经验,绝大多数学生能够根据图意正确写出关系式,但是也有可能出现下列错误:如遇到有字母的不会表示,遇到天平此时所处的状态不是平衡状态的不会用不等式表示,或者把所有的关系式都写成等式了。

遇到这种情况时,首先引导学生自主解决,引导他们再次观察,找出自己错的原因。自己实在解决不了的由同学或老师帮助解决。

2、当同学们把六个关系式都写正确后,出示问题:上面的六个关系式有什么异同点,你能给它们分成两类吗?

首先引导学生细致观察六个算式的异同点,然后再试着分类。问题预设:学生可能会给分成等式、不等式、含有字母的、不含有字母的四类。

3、紧接着再次提出问题:你能把上面的等式再分成两类吗?

让学生细致观察等式的特征,找出这些等式的相同点和不同点,然后再进行分类。问题预设:学生可能分成含有字母的和不含有字母的两类。

4、自学课本25————26页的内容。概括出等式和方程的意义。

根据以上分类情况,再根据书中的介绍由学生自己概括出等式和方程的意义。重点强调方程与等式的区别:方程一定是等式,但等式不一定是方程。

5、举例说明什么样的式子是方程?

当学生真正理解了等式与方程的意义后,试着让学生写出几个方程。预设:学生写的可能都是含有未知数x的方程,还有可能写出的是不含有未知数的等式。这就需要引导学生从方程的意义入手,正确写出算式。并且强调:在方程里,未知数一般用x表示,有时也可以用其它字母表示,如:y z k等。

导学二:

1、完成“试一试”。(目的是检验学生对方程的意义是否真正理解。)

2、把上面自主探究内容与同桌对学,然后进行小组交流讨论。(小组长把小组内存在的问题、疑点进行分类整理准备展示。)

此环节全部放给学生,由各小组长组织。老师借此机会参与到各小组和学生一起探究,一起交流。

四、展示。

1、小组派代表进行成果展示。(此环节主要是展示学生在自主探究过程出现的错误,解决不了的问题,以及疑点。由学生自己自主解决,实在解决不了的再由老师进行点拨。)

2、总结回顾:

问:这节课你有什么收获?有什么感受?

(说明:简单的总结,让学生梳理本课所学内容,强化方程的意义与本质)

五、反馈。

反馈的目的不仅是考察学生对本节课知识的掌握情况,还要考查学生利用新知识解决生活问题的能力,丰富用数学解决问题的活动经验,更主要的可以为今后学习列方程解应用题打好基础。

我安排了两项内容:“练一练”要求所有的学生都完成,拓展练习要求有余力的同学完成。(体现了因人而异,不同层次的学生有不同的学习任务。)

以上是我的说课,谢谢各位领导、各位老师!

流程方案(集锦9篇)


流程方案【篇1】

7:30—8:00早接待

晨间活动:跑步

分工:张先生组织孩子,邢先生接待家长,范先生打扫卫生。

8:00—8:10餐前准备

分工:费老师打饭、准备餐具;张老师组织孩子上厕所洗手;邢老师接待家长。

8:10—8:45早饭

分工:范老师吃饭,张老师照看孩子,邢老师接待家长。

8:45—9:00饭后活动

分工:范老师打扫活动室,张老师和邢老师组织儿童角活动。

9:00—9:20分享阅读《虫虫虫虫爬》

分工:张老师有课,邢老师有课。

9:20—9:30上厕所

分工:张先生和费先生分别组织孩子上厕所,邢先生组织孩子上厕所。

9:30—9:40喝水

分工:注意饮水常规,张老师组织孩子们在喝水后做节奏和唱歌。

9:40—10:00加餐

分工:范老师分发盘子和水果。张老师和邢老师提醒孩子们注意个人卫生。

10: 00-10:10上厕所,准备活动

分工:费老师组织孩子上厕所,张老师和邢老师组织上完厕所的孩子排队,脱下外套。

10:10—10:15做操

分工:全体教师面带微笑,动作整齐。邢老师带操,张老师和范老师站在队后做操,分发飞盘等。

10:15—10:30集体活动《捉老鼠》

分工:邢老师组织孩子游戏,张老师范老师配合。

10: 30-10:40上厕所喝水

分工如前

10:40—11:00亲子游戏《》

邢老师组织游戏,张老师和范老师配合。

11:00—11:15饭前准备

分工:邢先生组织孩子们洗手、上厕所,张先生组织孩子们坐下来看动画片。

11:15—11:45午饭

分工:范老师吃饭,张老师和邢老师组织孩子,注意日常事务。

11:45—12:00散步

分工:范老师打扫卫生,张老师和邢老师组织孩子们散步。

12:00午睡

张老师和邢老师组织孩子们上完厕所就**睡觉,费老师则擦地板。

幼儿集体游戏《捉老鼠》

目标:游戏在轻松愉悦的气氛中,既能提高幼儿钻、跑及躲闪的技能,发展幼儿的大肌肉群,又能锻炼幼儿身体的灵活性、敏捷性和快速反应能力,并培养幼儿互助合作的意识。

1方案 :教师和幼儿手拉手站成一个大圆圈做“老鼠笼”,3~5名幼儿站在大圆圈里扮演“老鼠”。扮演“老鼠笼”的幼儿手拉手举起并念儿歌,扮演“老鼠”的幼儿则在“老鼠笼”四周钻进钻出。

当念到“咔嚓一声”时,扮演“老鼠笼”的幼儿立即放下手,同时蹲下。在“老鼠笼”内的“老鼠”算被捉住,被捉住的幼儿表演节目,然后站在大圆圈上做“老鼠笼”。游戏继续进行,直到“老鼠”全部被捉住再调换部分角色,游戏重新开始。

2 方案:为了增加游戏的趣味性,扮演“老鼠”的幼儿戴上头饰,扮演“老鼠笼”的幼儿按顺时针边念儿歌边在圆圈上走动,增加“老鼠”钻出的难度。也可以放置沙包当“粮食”,规定“老鼠”一次只能拿一个沙包当“粮食”,并把取出后的“粮食”放在旁边的“粮食”筐里。

附小歌:老鼠坏东西,吃谷类,吃米饭。我们搭个老鼠笼,咔嚓一声捉住你。

亲子游戏名称《捡豆豆》

目的:训练儿童用拇指、食指拾起小物件的精细动作和手眼协调能力,有利于脑功能的发展。

准备:每位幼儿自带干净的瓶子2—3只,各类豆豆(请家长帮忙带)

方法:老师在孩子们面前准备了一些干净的豆子,让孩子们用手捡起来放进瓶子里,家长要引导和帮助他们。

注意:孩子拾豆时,母亲或家人应照顾好它们,以免将豆吞入嘴中。

分享阅读活动名称《虫虫虫虫爬》

详见分享阅读教参

流程方案【篇2】

校园消防宣传策划方案流程

在我们日常生活中,校园消防安全是非常重要的一环,它关系到每一位师生的生命安全。为了提高师生的消防安全意识和应急能力,以及培养正确的消防安全知识,我校决定制定一份校园消防宣传策划方案。以下是该方案的详细流程。

第一步:制定宣传目标

首先,我们需要明确宣传的目标。我们的目标是通过宣传活动提高师生的消防安全意识,让师生明白消防的重要性以及学会正确的应急处理方法。只有这样,我们才能真正提高整个校园的消防安全水平。

第二步:明确宣传内容

接下来,我们需要明确宣传的内容。消防宣传内容可以包括消防安全知识、火灾防范措施、灭火器使用方法等等。我们可以搜集相关的资料和案例,以生动形象的方式向师生传递这些知识和信息。

第三步:策划宣传活动

在制定宣传方案之前,我们需要策划一系列的宣传活动。这些活动可以包括宣传海报制作、消防知识竞赛、灭火器使用演示、逃生演练等等。我们可以组织学生自发参与这些活动,并结合课堂教学进行全方位、多角度的宣传,以提高宣传活动的效果。

第四步:确定宣传渠道

宣传渠道的选择是非常重要的一步。我们可以利用学校广播、校园电视台、校内官方网站等媒体来传播宣传内容。此外,我们还可以在校园内放置宣传海报、制作宣传册子,以及举办专题讲座等形式进行宣传。同时,我们还可以与社区消防部门合作,利用他们的资源和平台进行更广泛的宣传。

第五步:衡量宣传效果

最后,我们需要衡量宣传的效果。针对宣传活动的目标,我们可以通过问卷调查、学生成绩、火灾事故统计数据等方式来评估宣传效果。并根据评估结果,对宣传策略进行适时调整和改进。

在校园消防宣传策划方案流程中,以上五个步骤是非常关键的。通过这样的流程,我们可以设计出一套完整的消防宣传方案,并通过有效的宣传活动来提高全校师生的消防安全意识和应急能力。这样一来,我们的校园将成为一个更加安全、和谐的地方。

流程方案【篇3】

夏令营活动方案流程

夏令营是许多孩子在暑假期间期待已久的活动。为了让孩子们度过一个有趣、充实和难忘的暑假,夏令营活动方案必不可少。在本文中,我们将详细、具体且生动地介绍一个夏令营活动方案的流程。

第一步:活动准备

在开始夏令营活动方案的策划与实施之前,组织者需要进行充分的准备工作。首先,确定夏令营的主题和目标。这可以是探索自然、艺术创作、运动健身等。然后,确定夏令营的日期、时间和地点。这些细节将决定活动的安排和场地的准备。接下来,制定活动预算。这将帮助组织者控制开支并为活动提供必要的资源。最后,招募和培训夏令营的工作人员。他们将负责指导孩子们的活动并确保他们的安全。

第二步:孩子们的报名

为了吸引孩子们参加夏令营活动,组织者需要做一些推广工作。他们可以在学校、社区中心和在线平台上发布活动信息。当孩子们对夏令营感兴趣后,他们可以填写报名表格并缴纳一定的报名费。这将帮助组织者了解孩子们的兴趣和需求,并为他们提供相应的活动内容。

第三步:欢迎仪式和团队建设

在夏令营正式开始之前,有一个欢迎仪式是非常重要的。组织者可以邀请一些特殊嘉宾或表演者,为孩子们带来精彩的开幕表演。接下来,进行团队建设活动,以帮助孩子们更好地相互了解和合作。这可以是团队游戏、挑战任务或者户外探险等。通过这些活动,孩子们能够建立友谊,增强团队意识,并为接下来的活动打下基础。

第四步:教育性活动

一个好的夏令营活动方案应该包括丰富多样的教育性活动。这些活动可以为孩子们提供学习新知识和技能的机会。例如,在自然探索主题的夏令营中,孩子们可以学习如何建立帐篷、点燃篝火,并了解野生动物的生态环境。在艺术创作主题的夏令营中,孩子们可以参加绘画、雕塑和手工制作课程,发挥他们的创造力。在运动健身主题的夏令营中,孩子们可以参加各种运动项目,如足球、篮球和游泳。通过这些教育性活动,孩子们能够在玩乐中学习,增长见识。

第五步:娱乐活动

除了教育性活动外,夏令营还应包括一些娱乐活动,以增加孩子们的乐趣和兴奋。这可以是舞台表演、游乐设施、电影放映等。组织者可以邀请专业的表演团队来给孩子们带来精彩的演出。此外,组织者还可以安排一些户外游戏和竞赛,让孩子们参与其中,体验竞争和获胜的喜悦。

第六步:闭幕仪式和总结

在夏令营活动结束之前,有一个闭幕仪式是必要的。组织者可以邀请家长、朋友和其他重要人士来参加这个仪式。在闭幕仪式上,孩子们可以展示他们在夏令营期间学到的东西,比如一段舞蹈表演、一首歌曲或一幅画作。同时,组织者可以总结这个夏令营活动的成果和收获,并给孩子们颁发证书或奖品来鼓励他们继续努力。

综上所述,一个成功的夏令营活动方案需要经过准备、报名、欢迎仪式和团队建设、教育性活动、娱乐活动以及闭幕仪式和总结等多个步骤。通过这些步骤,孩子们可以度过一个充实、有趣和难忘的夏令营。希望这篇文章能够帮助您更好地了解夏令营活动方案的流程和实施。

流程方案【篇4】

深圳市规划方案活动流程图

第一部分活动前期管理

一、 活动方案说明

二、 宣传资料准备

1、 设计

2、 资料发放及接收

3、 媒介安排

三、 物料准备

1、 接待物料舞台物料

四、 人员配制

1、 总协调

a协调组(公司及对方公司)

b演艺集团(模特、主持人、化妆师、发型师、导演)

c效果组(灯光、音响、烟雾)

d后勤组(保安、保洁)

2辅助工人(熨斗工、换衣服工)

3、 人员培训

a达成目标

b培训人员

c培训要点

d培训安排

五、 落实

1、 活动场地落实

2、 人员落实

3、 酒店落实(吃、住、行)

第二部分活动中期管理

一、 现场程序表

二、 舞台搭建

1、 灯光部分

2、 音响部分

3、 **部分

三、 舞台布置

四、 签到现场布置

5、 人员接待(记者、嘉宾、主持人等)

六、 现场控制

1、 **控制

2、 突发时间控制

3、 现场演艺人员管理

4、 服装及道具的管理

5、 舞台效果控制

6、 各功能区域划分

7、 确定机位

8、 确定宽频网络

七、 活动会议手册

八、 现场时间表

九、 新闻通稿

一十、 预演

第三部分活动后期管理

一、 专题片制作收集

二、 新闻炒作资料收集

三、 vcd 、相片制作收集

四、 工作汇总

五、 信息反馈

六、 客户满意度调查

七、 费用预算

第一部分活动前期管理

一、 活动方案说明及确定

二、 宣传资料的准备

1、设计

2、资料发放及接收

3、媒介安排

◆报纸类/电视台/电视

三、 物料准备

1、 接待物料

2、 舞台物料

四、 人员配制

1、 总协调

a、 协调小组(公司和其他公司)

b 、演绎组

◆模特◆主持人

c、后勤组

2、 舞台布置人员

3、 效果组

4、 辅助工

5、摄影、摄像人员

6、人员培训

(1)、达成目标

(2)、培训人员

(3)、培训要点

(4)、培训安排

五、落实情况

1、场地的落实负责人联系**:

2、人员落实

◆**领导参加新闻发布会人员资料(嘉宾)

◆**代表名单(记者)

3、 服装及道具

4、酒店落实

①住 (宾馆)

◆ 酒店嘉宾花名册

②吃◆落实各餐饮

◆餐饮组织一览表

③行◆车辆计划

◆接机安排

第二部分活动中期管理

一、 现场程序表

二、 舞台搭建

1、灯光部分负责人联系**

2、音响部分负责人联系**

3、**部分负责人联系**

三、场景布置

四、签到处现场布置

五、 人员接待

六、现场控制

1、 **控制

2、 突发时间控制

3、 现场演艺人员控制

4、 服装及道具的管理

5、 舞台效果控制

6、 区域划分

7、 确定机位

8、 确定宽频网络

七.活动会议手册

八、现场时间表

九、新闻通稿

十、预演

第三部分活动后期管理

一、 专题片制作收集

二、 新闻炒作资料收集

三、 vcd、相片资料收集

四、 工作汇总

五、 信息反馈

六、 客户回访表(见附件一)

七、 费用预算(见附件二)

(附件一)

客户服务满意度调查表

公司您好!

我司与贵公司就进行了合作,本调查表是为了我们更好的合作,提升服务质量,提高客户满意度,并及时发现和改进我们工作中存在的不足。

诚意感谢您的支持!

1、 你对我们的服务人员满意吗?

1服务人员态度很满意,满意,一般,不满意,极差

2服务人员的表达能力非常满意、满意、一般、不满意、极差

三。服务人员的专业水平很专业,比较专业,一般偏低

4员工的工作效率很高,比较高,一般,低

5交货及时,很及时,很及时,一般不及时,极差

6员工的责任心非常满意、满意、一般、不满意、极差

7. 交货缺货错货情况 □缺货、错货 □缺货 □错货 □无

8你方对产品质量的评价非常满意、满意、一般、不满意、极差

9与业主人员的业务沟通非常满意,满意,一般,不满意,极差

10符合用户规定,非常满意,满意,一般,不满意,极差

11服务人员承诺履**况非常满意、满意、一般、不满意、极差

12投诉处理的及时性非常及时;及时;一般;不及时;极差

13. 投诉处理的彻底性 □非常彻底 □彻底 □一般 □不彻底 □极差

14对遗留问题的跟踪非常及时、及时、笼统、不及时、极差

二、您现在认为***xx****的设计制作如何:

3、 您认为**xx*的客户服务质量如何*

4、 如对以上内容有补充意见,请填写:

5,请留下您对我们服务的宝贵意见:

六、联系

1. 服务**:()

2. 服务信箱:

客户服务部

(附件二)

费用预算

1、广告宣传及制作

2、**投放

3、礼品制作

4、 接待物料

5、舞台整体费用

附:费用项目清单

灯光部分

音响部分:

**部分

6、演出人员

7、 场地租用

8、酒店及餐饮

9、服装及道具

10、摄影、摄像

11、其他相关费用

流程方案【篇5】

一、什么叫垃圾

垃圾便是没有用的、提前准备丢掉的物品

二、垃圾到哪里来到

大家所有人每日都是丢出很多垃圾,你了解这种垃圾他们到哪里来到吗垃圾解决的`一般方式 大多数处在传统式的堆积垃圾填埋方法,占有上平方公里农田;而且虫蝇乱窜,废水四溢,臭气冲天,比较严重地环境污染。大家很多地耗费資源,大规模生产,很多地消費,又很多地生产制造着垃圾。

三、掌握垃圾的伤害

提供相关垃圾伤害的材料,请大伙儿融合自身的工作经验谈一谈垃圾的坏处。

总结:垃圾味道刺鼻,毁坏景色;垃圾侵吞农田,使大家日常生活的地区愈来愈小;垃圾中的病毒感染、病原菌会令人得病。

四、归类解决垃圾的优势

垃圾,只能在混在一起的情况下才算是垃圾,一旦归类收购就全是商品。垃圾分类便是在根源将垃圾分类推广,并根据归类的清运垃圾和收购使之再次变为資源……

归类解决垃圾的优势:

1、降低占地面积:日常生活垃圾中一些化学物质不容易溶解,使农田遭受比较严重腐蚀。垃圾分类,除掉能收购的、不容易溶解的化学物质,降低占地面积;

2、降低空气污染:废料的充电电池带有金属材料汞、镉等有害的化学物质,会对人们造成比较严重的伤害;土壤层中的废旧塑料会造成 粮食作物限产。因而回收再利用能够降低伤害;

3、废物利用:收购1500吨废旧纸张,可免于采伐用以生产制造1200吨纸的树木。生产制造垃圾中有30%—40%能够回收再利用,应爱惜这一小本创业大利的資源。大伙儿还可以运用易拉罐手工笔盒,既环境保护,又节约能源。

五、了解垃圾分类标识,学好垃圾分类

提供新式垃圾箱相片,说说它的外观设计特性。

现如今我国日常生活垃圾一般可分成四大类:回收利用垃圾、餐厨垃圾垃圾、危害垃圾和别的垃圾。

回收利用垃圾关键包含废旧纸张、塑胶、夹层玻璃、金属材料和面料五大类。

餐厨垃圾垃圾包含剩菜剩饭、骨骼、菜根青菜叶、外果皮等食品行业废弃物。

危害垃圾包含废旧电池、废日光灯管、废水银体温计、过期药品等,这种垃圾必须独特安全性解决。

别的垃圾包含除所述几种垃圾以外的砖瓦窑瓷器、余土、洗手间废旧纸张、卫生纸等无法收购的废料,采用环境卫生垃圾填埋可合理降低对地表水、地下水、土壤层及气体的环境污染。

六、塑造垃圾分类的环境保护意识,宣传策划垃圾分类的关键实际意义,爱惜身旁的自然环境,把垃圾从对手变为盆友。

主题活动事后:

1.出“垃圾分类”主题黑板报内容

2.设计方案“垃圾分类”垃圾桶。

流程方案【篇6】

为了使公司组织的沙龙活动更加有序,使沙龙活动最大限度达到宣传公司、品牌、产品或培养、签约客户的目的,现对公司今后组织的沙龙流程进行如下规定。

1、主题及目的

明确沙龙会的主题、内容和目的:主题是否符合市场和行业的需求;内容是否丰满充实;应明确是为了宣传公司、品牌、产品或培养客户或直接签订合同。

沙龙主题由营销部门根据市场和行业需求向营销管理服务部提出建议,营销管理服务部在会前启动会上最终确定沙龙主题。

2、部门分工

1.牵头部门:营销管理服务部

公司沙龙活动组织均由营销管理服务部牵头,并负责沙龙活动策划、前期宣传、后续报道、启动会及总结会组织等相关工作。

2执行部门:负责沙龙执行的分公司或市场部

沙龙举办地的分公司或营销部门负责沙龙活动执行工作,包括:物料准备、场地选择、场地布置、组织实施、人员接待、流程把控、活动气氛调动等。

3.支持部门:其他相关部门

市场部:负责邀请客户、收集客户痛点、调动会议现场气氛、跟进客户等相关工作

技术部:如果沙龙会议需要技术部提供相关支持,技术部负责人或指定人员必须参加并提供支持。

经营管理服务部:负责沙龙的材料准备和演讲嘉宾的邀请,提前收集嘉宾演讲稿并发送至市场管理服务部。

3、流程安排

营销管理服务部负责会议组织过程的全过程控制,并实时跟踪,确保沙龙活动有序进行。

1.沙龙启动会

沙龙活动策划之前,由营销管理服务部组织相关部门召开启动会,明确沙龙时间、地点、主题、预期目的、部门分工、邀约嘉宾、会议预算等一系列会前准备工作。

2.沙龙策划方案撰写

沙龙策划方案根据启动会收集的信息资料,由营销管理服务负责方案稿的撰写,并提交至主要执行部门主管、营销总监和总经理审核,方案审核通过方能执行。

策划方案内容应包括:公司简介、会议背景介绍、沙龙举办目的、主题、时间、场地选择与布置、嘉宾邀约、参会人员邀约、沙龙流程安排、物料准备、宣传推广、人员配置、预算分析等相关内容。

3.前期宣传

会前一周,市场管理服务部开始会前宣传工作。

(1)制作会议h5邀请函,经营销总监和总经理审核通过后,由各营销人员利用朋友圈、微信群等社交工具**;

(2) 撰写微信宣传软文,会前一周持续推送;

(3) 在互动吧、***士等活动发布**、大型行业论坛、贴吧等平台发布相关信息和软文。

4.客户痛点收集

(1)痛点收集

·营销部门在邀约客户参会时需提前收集客户在日常经营中遇到的法律、业务、系统等相关问题,并汇总至营销管理服务部;

·若未能收集到客户痛点,各分公司和营销部门需针对当前市场和行业现状,每个部门至少提出3条问题,并汇总至营销管理服务部,由营销管理服务部整理出3条行业普遍关注的问题。

(2)痛点用处

·市场营销管理服务部对问题进行梳理,并发送至运营管理服务部、营销总监、各参演营销经理和主持人;

·运行管理服务部将问题反馈至邀约的演讲嘉宾处,并建议嘉宾根据问题准备演讲内容或提前准备好相关问题解决方案;

·每位参与营销的经理应了解本区域内的客户问题,并指导客户现场提问;

·如果现场没有顾客提问,主持人可以举砖引玉,提出整理好的问题,带动现场气氛。

5.会后跟进

(1)后续报道:营销管理服务部根据会议**、录音及**资料,整理并撰写相关宣传报道稿件,通过微信、**等平台进行传播,最大限度达到品牌宣传的目的;

(2) 会后客户跟进:会后,所有营销人员应及时跟进和维护客户,最好能达到签订订单的目的。

6.会议总结

会议结束后,各主要参会人员针对会议在准备、宣传、进行、报道与跟进等阶段存在的不足之处提出意见和建议,由营销管理服务部负责整理和改进,为今后的沙龙组织提供借鉴。

4、嘉宾及参会人员邀约

1.邀约嘉宾

·根据沙龙主题,运营管理服务部将邀请行业权威机构或专家作为嘉宾进行演讲;

·运营管理服务部必须提前与客人沟通会议主题和时间;

·运营管理服务部应在会前1-3天内收集嘉宾发言稿,并发送至市场营销管理服务部;

·营销管理服务部将**发送给部门总监和总经理,对客人的演讲内容进行审核;

·运营管理服务部在邀请客人时,应与客人就会议现场发言的方式进行沟通,尽量避免宣传形式,采用互动方式;也就是说,用当前行业存在的问题和案例来解释,而不是枯燥乏味的纯理论知识介绍。

注:根据沙龙主题确定嘉宾身份类型,嘉宾由营销部门、营销总监、总经理推荐或运行管理服务部自行联系,嘉宾最好为业内有一定知名度的权威人士。

2.客户邀约

(1)客户邀约方式

客户邀约一律使用微信朋友圈、微信群、互动吧、活动家等网络邀约方式进行,禁止营销人员通过**方式邀约。

(2)邀约对象

会议邀约目标企业分为2类:

·公司客户:潜在客户、预期客户或已完成交易的客户

·合作企业:支付公司、电子签证企业等第三方合作企业

注:会议邀约目标人群为目标企业的高层管理人员,如运营总监、总经理、董事长等(如遇到报名人数过多、报名人员级别不够,营销管理服务部需通过**、邮件等方式一一告知,并做好解释、安抚工作。)

5、会议现场组织

1.会议选址

会议地点应靠近车站、地铁或其他环境优雅、停车方便的场所;

2.物料准备

各分公司行政部门需及时准备好会议所需水果、糕点、纸笔、公司宣传画册、参会人员席卡、易拉宝、横幅等等物料;

营销管理服务部需协助执行部门准备好会议所需背景***、邀请短信模板、席卡模板等相关材料,并建立沙龙微信讨论群;

3.现场布置

会议场地可根据现场环境和舒适、方便沟通的原则进行布置。如:座位需面对演讲嘉宾、每桌要安排客户经理进行对接和互动等等;

4.人员安排

·参会人员引领:在会场显眼处(如会场正门)安排2-3位工作人员负责参会嘉宾迎接和引路工作;

·会议签到:现场安排1-2人负责会议签到;

·氛围营造:每桌或区域单位设1名客户经理,营造会议气氛;

·主持人:主持人须提前熟悉所有会议流程,在会议开始前需要对公司、会议主题、会议背景、演讲嘉宾进行介绍,并邀请参会嘉宾加入微信群;在会议过程中,要按照会议流程图严格控制会议过程和时间,并负责促进会议气氛;在会议结束或会议过程中推荐公司产品。

六、组织流程完善

由于当前公司组织此类沙龙会议尚处于摸索阶段,在流程等方面无法做到十全十美,营销管理服务部将根据此后会议中出现的问题及时完善。

本流程未尽事宜,各部门可提出相关意见和建议,反馈市场管理服务部,由市场管理服务部酌情修改。

营销管理服务部

2016年3月22日

流程方案【篇7】

课外教学活动方案设计流程

引言:

在教育教学中,课外教学活动是学生全面发展的重要途径,能够拓宽学生的视野,增强学生的实践能力。而一个成功的课外教学活动方案设计是确保活动顺利开展的基础。本文将详细介绍课外教学活动方案设计的流程,并提供具体方法和实例。

一、明确目标和需求

在开始设计课外教学活动方案前,首先要明确活动的目标和需求。目标是指活动所希望达到的效果,需求是指学校和学生的实际需要。比如,一个科学实验活动的目标可能是培养学生的探究精神和实验技巧,而需求可能是学校希望学生加深对科学知识的理解。

二、确定活动类型和内容

根据目标和需求,确定适合的课外教学活动类型和内容。常见的活动类型包括实地考察、社会实践、志愿者活动等。活动内容应与学生的学科知识和实际需求相结合,使其具有一定的可操作性和趣味性。比如,一个语文阅读活动可以选择参观书展、写读书心得等方式。

三、制定活动计划书

活动计划书是课外教学活动方案设计的核心文件,它包括活动的主题、目标、时间安排、活动内容、实施方式等。活动计划书应该具备逻辑性和可操作性,能够清晰地传达活动的核心要素。例如,一个社会实践活动计划书可以包括活动的背景介绍、参与人员名单、活动流程、预期成果等部分。

四、制定活动预算

在课外教学活动方案设计过程中,需要制定活动的预算。预算涉及到活动所需的经费、场地租赁费用、人员费用等方面,并且需要合理分配预算以确保活动顺利开展。例如,一个实地考察活动的预算可以包括交通费、导游费、用餐费等。

五、组织活动实施

在活动实施过程中,需要进行组织、指导、监督和协调等工作。要确保活动按照计划进行,达到预期效果。活动实施中需要注意安全问题,制定相应的应急预案,并做好现场管理和指导工作。例如,在实地考察活动中,需要确保学生的人身安全和财物安全,遵守相关规定和约定。

六、评估和反馈

在活动结束后,需要对活动进行评估和总结,收集参与者的意见和反馈。评估是对活动效果和活动过程的全面检查,可以为今后的活动改进提供参考。比如,通过问卷调查、讨论会等方式,了解学生和教师的体验和感受,发现问题并加以解决。

结语:

课外教学活动方案设计流程是一个复杂、繁琐且重要的工作,需要考虑多方面因素,并与实际需求相结合。一个成功的方案设计能够提高课外教学活动的质量,促进学生的全面发展。希望本文的介绍能够对广大教育工作者提供一些有益的启示和帮助。

流程方案【篇8】

河田朱溪小学道德讲堂活动方案

一、指导思想

认真贯彻落实党的十八大精神,以邓小平理论和“****”重要思想为指导,深入贯彻落实科学发展观,围绕贯彻落实《公民道德建设实施纲要》,以提升教师学生道德素质为核心,以“身边人讲身边事、身边人讲自己事、身边事教身边人”为基本形式,建立起覆盖中心上下的“道德讲堂”网络,推动先进道德理念入脑入心,外化于行,营造实现“中国梦”的浓厚氛围,为争创全国文明城市夯实思想道德基础。

二、明确道德讲堂的建设宗旨

为使道德讲堂能顺利进行,我们在第一讲中就要对全体参加讲堂的老师和学生明确“道德讲堂”的建设宗旨。

“道德讲堂”以社会公德、职业道德、家庭美德、个人品德等“四德”为主线。社会公德建设主要包括:文明礼貌、助人为乐、爱护公物、保护环境和遵纪守法等,以“礼仪”为核心;职业道德建设主要包括:

诚实守信、爱岗敬业、办事公道、热心服务、奉献社会等,以“诚信”为核心;家庭美德建设主要包括:夫妻和睦、孝敬长辈、关爱孩子、邻里团结、勤俭持家等,以“和睦”为核心;个人品德建设主要包括:友善互助、正直宽容、明礼守信、热情诚恳、自强自立等,以“友善”为核心。

三、基本原则

一是贴近实际。自觉坚持正确的**导向,把宣讲的思想性、指导性和可接受性结合起来,坚持一切从实际出发,说实话,鼓实劲,求实效,使道德讲堂办出特色,办出风格。

二是贴近生活。从现实生活中挖掘生动的典型事例,使“道德讲堂”建设工作更加入情入理,充满生活色彩,富有生活气息,同时在建设过程中,要不断研究“道德讲堂”特点和群众的需求变化,创新模式,努力开创工作新局面。

三是贴近群众。重视群众在“道德讲堂”建设中的主体地位,把握群众脉搏,反映群众需求,多联系群众身边的事例,多反映群众的切身感受,多用群众语言和群众喜闻乐见的形式,使“道德讲堂”真正成为群众自己的讲堂。

四、讲堂的基本内容

紧紧围绕社会公德、职业道德、家庭美德、个人品德这个核心,明确“五个一”的基本流程:

(1) 唱首歌。每次讲课前,组织干部职工学习唱一首道德主题曲;

(2) **短片,围绕要凸出的主题,组织干部职工参加道德模范人物或故事大师的先进事迹短片;

(三)讲一个故事(三个方案):讲述一个发生在身边的,体现民族传统美德、优秀革命道德与时代精神的典型事例;他讲述了中国道德模范和先进人物的事迹;请专人演讲或轮流演讲“道德”专题,每人每次一个专题(社会公德、职业道德、家庭美德、个人品德,这四个大专题中又包含很多小专题)。

(4) 谈感情,由学生点评身边好人的故事,诉说内心的感受,体会道德德力量,升华自己的境界;

(五)诵一段经典,组织干部职工诵读一段与主题有关的中华传统经典语录或征集的公民道德“三字经”,巩固提升道德认知和道德情感。

河田朱溪小学

2013.10

河田朱溪小学道德讲堂活动总结

如果说母爱是一艘船,载着我们从年轻到成熟,那么父爱就是一片大海,给我们一个幸福的港湾。如果母爱的真情点燃了我们心中的希望,那么父亲的厚爱将是鼓起我们远航的风帆,我们拿什么来回报父母那说不完道不尽的爱呢?大多数时候,我们只是习惯了,认为这是理所当然的。

我们渐渐忘记了感动,忘记了说声谢谢,甚至忘记了是谁为我们撑起了这片美丽的天空!我校10月开展《孝敬父母努力学习》道德讲堂活动‘让同学们拷问自我,正视自我,看看我们是否有那游戏人生、享受生活的资本,我们号召同学们不要将爱仅存于体悟和思维中,积极认真地生活心表达对父母的感激敬爱之情。

1、 传播凡人的道德故事,突出道德榜样的力量

春暖百花开,活力齐绽放,孝敬父母是道德素质的首要要求,一个人如果不知道孝敬父母,就很难想像他热爱祖国和人民;这是我们永恒的美德,也是新时期学生义不容辞的义务和责任。通过本次活动的实施和倡导,学生们各自谈了自己的体会和在以及父母所做的一切,他们也深深体会到平时要从点滴小事做起,平常家事中完善自我,倡导文明行为,形成高尚的道德品质和积极进取的人生态度,使自己成为有理想、有道德、有文化、有纪律的一代新人。

二、主题活动,丰富“道德讲堂”实践内涵

3、 德与课与课堂教学、节庆活动相结合

课堂教学既是道德讲堂的阵地,也是道德讲堂的延伸,在日常的教学中潜移默化,润物无声中对学生进行道德教育。根据每月的时令特点,既注意传统节日和纪念日,又抓住重大事件,渗透思想道德教育内涵,注重少年儿童的实践体验,培养学生的创新精神和实践能力,从而推动德育工作不断迈上新台阶。

四、道德讲堂,提升整体工作

在道德大讲堂的活动中,奉献在这片沃土上的鲜花,五彩缤纷。一块块金灿灿的奖牌记录了学校建设与发展,一个个众人赞誉的口碑见证着孩子们的进步和成长,我校将通过“道德讲堂”这个小窗口,做好文明建设这篇大文章。

河田朱溪小学

2013.10

河田朱溪小学道德讲堂活动方案

一、指导思想

认真贯彻落实党的十八大精神,以邓小平理论和“****”重要思想为指导,深入贯彻落实科学发展观,围绕贯彻落实《公民道德建设实施纲要》,以提升教师学生道德素质为核心,以“

流程方案【篇9】

一、聚会目的:

初中毕业多年,却永远抹不去心中那份纯真的留恋!“让我们荡起双浆”,“同桌的你”,是否美丽依然,是否……

相识是一种缘分,相聚是一种惦念!那开心的往事,那快乐的校园,不为别的,只为那份纯真的友谊和青涩的依恋……

三年前,我们带着幼稚,满怀着憧憬,为了满足对知识的渴求,从各方走到一起,在我们那不能忘记的母校——新渡中学,留下了我们不能忘却的人生足迹。我们获得了知识,培育了友谊,从那我们又信步走向四面八方。

我们在一起聚会,怀念一些人,一段旧事,不是因为曾经的学习,而是因为那里面有我们走过的岁月,它已经和一段年华密不可分。这些经历,成为若隐若现、看不见摸不着的后方阵地,以种种或明或暗的方式,建立与我们现在和将来丝丝缕缕的关联。

因此,我们关注聚会,我们期待聚会,我们需要聚会。

二、聚会前言:

考虑到同学们来自不同的乡镇,如果聚会安排在晚上的话,有很多同学的家长不允许出夜,再者晚上有些同学没有车回去,同时也存在着人身安全隐患,还有太晚了回不了去的住宿问题……经部分同学讨论现在暂时作出如下简略活动策划:

三、聚会安排:

1、聚会时间地点:暂安排在腊月二十七至二十八中的一天(在群内商定后再作决定,坚持少服从多数原则)

聚会地点:(待定)

2、筹备人员职责分工:(具体人员待定)

注:工作人员均为义务工作,毫无一分收入。但筹备人员均有适当优待。

分工明细将另行提出。欢迎大家踊跃报名,发挥个人所长,为本次聚会的圆满举行而尽一份力。特别是现处于街上的班干或同学,你们的积极作用能起到事半功倍的效果。

3、参加人员

新渡中学909班一切能抽身参加的同学,可带爱人、孩子,并尽量邀请自己的男女朋友参加。凡能联系到的同学,筹备人员一定要尽到提前通知的义务。

4、聚会经费

暂定每人收取人民币100元。(到时跟据具体实际开支收取)

所交费用为聚餐和ktv时间的经费。

本次聚会为自愿参加,活动期间的经费于活动开始前收取完毕,一律按本班人头aa分摊(特殊情况再灵活处理)(老婆、孩子不用)。

收取方式:活动期间收取或提前交给财务人手中。聚会过后如有剩余,将有关人员结算一切开支后,详细公布。余额由财务相关人员平分各出经费人。回家的路费、住宿费用均为自理。

四、聚会要求

1、按照聚会日程安排,统一进行活动,提高时间观念,服从统筹和副统筹的领导。

2、每位同学都要讲团结,讲风格,互谅互让,避免斤斤计较,力争经过我们大家的努力,把这次聚会办成一次团结、活泼、热烈、融洽的盛会,留下一个美好的回忆。

3、希望经济条件较好的同学能够从经济上大力支持本次同学聚会。也希望经济条件有难处的同学,要量力而行。几年见一面,清茶淡水也是情。

五、聚会流程

聚会前:相关人员做好活动前的一切准备工作(如聚餐场地、ktv场所)注:在活动之前,如果同学方便的话可以自己从家里带一些美食或好吃的东西或家乡的一些特产来和同学一起分享。

1、聚集

聚合时间:10:00-11:00聚集地点:待定(期间要签到)

注:(有任务的同学提前集合,开展相关的工作。其他的同学务必在聚合期间到场)

集合时间比较短,希望同学尽量能够准时到达,先到的同学可以自行娱乐,回忆以的快乐时光。10:00-11:00在集体合照后,租车、步行或骑车前往聚餐目的地。(途中要注意一切安全)

到达目的后,全体同学开始聚餐的有关事项.

聚餐期间可以闲聊和一起玩游戏(游戏待定)如:

1)护花使者

首先由一男一女组合(情侣组合),然后把两人脚用绳系起来,中间绑上气球,找出另一同样的组合,两组面对面站着,由主持人发出“开始”口令,当听到“开始”口令后,由双方男孩进攻,想办法去弄破对方脚上的气球,但同时要护好自己脚上的气球,女孩子要配合男孩子的进攻和防守。我们规定的时间是3分钟,在规定的时间内弄破对方气球的为胜方,时间到双方都未弄破气球的算平局。我们采用淘汰赛,将所有人分组进行,一局定胜负,胜方进入下一轮比赛,最后胜出的将评为:组合。(持续时间:40分钟)

2)数七

大家围坐一圈,从某一个人开始数数,下面接,凡是到有数字7或者7的倍数的时候,就要跳过去不数,并用别的动作代替(比如拍一下手)。错者受罚(表演节目)。数到99结束。(持续时间:20分钟)

3)传牙签

参与游戏者每人抽一张扑克牌,然后相继按扑克牌的顺序坐好,持最小(或)的那张扑克牌的人为先头,用嘴衔住那根牙签,依次传到下一个人的嘴里,不许掉哦,注意不能借用手或任何工具帮忙,如果掉了,那自然要受到惩罚喽,传完一圈后,游戏未完。将牙签撅一半,继续抽扑克牌,按新的顺序坐好,接着下一轮的传递……继续撅一半……再撅……越来越刺激.

2、聚餐开始

11:30—13:00班长致辞开场后,大家可以尽兴地畅饮。饭后,已签到同学准备每人3—5分钟的演讲。演讲顺序按签到顺序排列,先到者先讲,每个人应有机会。演讲不分主题,可以随意讲,只要是真情实感,都欢迎,可以是分享以前读书的点点滴滴,可以是谈目前的情况,或者刚毕业期间的感受,对社会的认识,对未来的设想等等。不一定要面面俱到,只要利用好3——5分钟让同学们更了解自己就好。

邀请主持人做最后的发言,一起集体合影。

注意:聚餐结束后,需要回家的同学可以回去,如果还有没有尽兴的话可以继续参加下午的ktv,回到家的同学一定要切记打电话统筹报平安。

3、ktv

14:00—17:00ktv期间大家尽情地唱,尽情地喝,尽情地玩。但注意自己要安排晚宿的问题。

4、17:00聚会结束:原则上17点所有活动结束,单身的同学可以自行延长活动时间,需要回家的同学一定要确保自己是否可以回家,但始终坚持一点“喝酒不开车,开车不喝酒”。回到家的同学必须打电话报平安!!!

六、聚会后续事宜

1.由统筹整理通讯录,在909班群里的空间里发布,便于同学相互联系和后续交流。

2.合照的电子照片可以放到909班群里的共享空间,以供下载。

其它照片由副统筹收集整理,打包上传到网络空间,以非公开形式仅对同学提供下载。

3.在群里论坛公布聚会费用使用情况。

4、其它事宜在群里公布和通知。

七、费用开支预算

暂按30人__100元/人=3000元,参加计算,大概数字仅供参考

1、交通费用200

3、中餐1600(大概4桌,每桌400)

4、唱歌1000

5、杂项200

备注:此为“一日聚”的方案,如有更好的方案或建议,敬请在qq群、群论坛提出。


本文的网址是http://www.zfw152.com/a/5660938.html