趣祝福logo
地图 > 祝福语 > 范文大全 > 高中数学教案 >

高中数学教案推荐

高中数学教案推荐

推荐给您一些最新的关于“高中数学教案”的经典文章。老师每一堂上一般都需要一份教案课件,因此就需要我们老师写好属于自己教学课件。教案是教学经验的重要积累。很不错的信息快分享给你的朋友看看吧!此外,您还可以浏览范文大全栏目的粮食合同

高中数学教案 篇1

课题:命题

课时:001

课型:新授课

教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

教学重点与难点

重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假

教学过程

一、复习回顾

引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

二、新课教学

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)若直线a∥b,则直线a与直线b没有公共点.

(2)2+4=7.

(3)垂直于同一条直线的两个平面平行.

(4)若x2=1,则x=1.

(5)两个全等三角形的面积相等.

(6)3能被2整除.

讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

抽象、归纳:

1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1:判断下列语句是否为命题?

(1)空集是任何集合的子集.

(2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗?

(4)若平面上两条直线不相交,则这两条直线平行.

(5)=-2.

(6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

2、命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

(1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分.

(3)若a>0,b>0,则a+b>0.

(4)若a>0,b>0,则a+b<0.

(5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

3、命题的分类

真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

强调:

(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.

(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

判断一个数学命题的真假方法:

(1)数学中判定一个命题是真命题,要经过证明.

(2)要判断一个命题是假命题,只需举一个反例即可.

例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:

(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

三、巩固练习:

P4第2,3。

四、作业:

P8:习题1.1A组~第1题

五、教学反思

师生共同回忆本节的学习内容.

1、什么叫命题?真命题?假命题?

2、命题是由哪两部分构成的?

3、怎样将命题写成“若P,则q”的形式.

4、如何判断真假命题.

高中数学教案 篇2

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案模板 篇2

教学准备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有最大值,并求出它的最大值

.已知数列{an},an∈N,Sn=(an+2)2

(1)求证{an}是等差数列

(2)若bn=an-30,求数列{bn}前n项的最小值

0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12.某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学教案模板 篇3

一、课程性质与任务

数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

了解:初步知道知识的含义及其简单应用。

理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

第2单元不等式(8学时)

第3单元函数(12学时)

第4单元指数函数与对数函数(12学时)

第5单元三角函数(18学时)

第6单元数列(10学时)

第7单元平面向量(矢量)(10学时)

第8单元直线和圆的方程(18学时)

第9单元立体几何(14学时)

第10单元概率与统计初步(16学时)

2.职业模块

第1单元三角计算及其应用(16学时)

第2单元坐标变换与参数方程(12学时)

第3单元复数及其应用(10学时)

高中数学教案模板 篇4

教学目标:

1、结合实际问题情景,理解分层抽样的必要性和重要性;

2、学会用分层抽样的方法从总体中抽取样本;

3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:

通过实例理解分层抽样的方法。

教学难点:

分层抽样的步骤。

教学过程:

一、问题情境

1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是。即40,32,28。

三、建构数学

1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

2、三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3、分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分。

(2)确定比例:计算各层的个体数与总体的个体数的比。

(3)确定各层应抽取的样本容量。

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。

四、数学运用

1、例题。

例1(1)分层抽样中,在每一层进行抽样可用_________________。

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”。

对这三件事,合适的抽样方法为

A、分层抽样,分层抽样,简单随机抽样

B、系统抽样,系统抽样,简单随机抽样

C、分层抽样,简单随机抽样,简单随机抽样

D、系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5。

然后在各层用简单随机抽样方法抽取。

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5。

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。

分析:(1)总体容量较小,用抽签法或随机数表法都很方便。

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。

五、要点归纳与方法小结

本节课学习了以下内容:

1、分层抽样的概念与特征;

2、三种抽样方法相互之间的区别与联系。

高中数学教案模板 篇5

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案 篇3

教材分析:

前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:

(一)知识与技能

1.掌握数量积的定义、重要性质及运算律;

2.能应用数量积的重要性质及运算律解决问题;

3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法

以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观

创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

教学重点:

1.平面向量的数量积的定义;

2.用平面向量的数量积表示向量的模及向量的夹角。

教学难点:

平面向量数量积的定义及运算律的理解和平面向量数量积的应用。

教学方法:

启发引导式

教学过程:

(一)提出问题,引入新课

前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?

这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?

我们知道:W=|F||s|cosθ,

功是一个标量(数量),而力它等于力F和位移s都是矢量(向量),功等于力和位移这两个向量的大小与它们夹角余弦的乘积。这给我们一种启示:能否把功W看成是两向量F和s的一种运算的结果呢,为此我们引入平面向量的数量积。

(二)讲授新课

今天我们就来学习:(板书课题)

2.4 平面向量的数量积

一、向量数量积的定义

1.已知两个非零向量 与 ,我们把数量| || |cosθ叫做 与 的数量积(或内积),记作 ,即 =| || |cosθ , 其中 θ是 与 的夹角。

2.规定:零向量与任一向量的数量积为0,即 =0

注意:

(1)符号“ ”在向量运算中既不能省略,也不能用“×”代替。

(2) 是 与 的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。

(3)两个向量的数量积是一个数量,而不是向量。而且这个数量的大小与两个向量的模及其夹角有关。

(4)两非零向量 与 的数量积 的符号由夹角θ决定:

cosθ

= cosθ = 0

cosθ

前面我们学习了向量的加法、减法及数乘运算,他们都有明确的几何意义,那么向量的数量积的几何意义是什么呢?

二、数量积的几何意义

1.“投影”的概念:已知两个非零向量 与 ,θ是 与 的夹角,| |cos( 叫做向量 在 方向上的投影

思考:投影是向量,还是数量?

根据投影的定义,投影当然算数量,可能为正,可能为负,还可能为0

|(为锐角 (为钝角 (为直角

| |cos( | |cos( | |cos(=0

当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 | |;当( = 180(时投影为 (| |

思考: 在 方向上的投影是什么,并作图表示

2.数量积的几何意义:数量积 等于 的长度| |与 在 方向上投影| |cos(的乘积,也等于 的长度| |与 在 方向上的投影| |cos(的乘积。

根据数量积的定义,可以推出一些结论,我们把它们作为数量积的重要性质

三、数量积的重要性质

设 与 都是非零向量,θ是 与 的夹角

高中数学教案 篇4

教学目标

(1)了解算法的含义,体会算法思想.

(2)会用自然语言和数学语言描述简单具体问题的算法;

(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力

教学重难点

重点:算法的含义、解二元一次方程组的算法设计.

难点:把自然语言转化为算法语言.

情境导入

电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手.作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

第一步:观察、等待目标出现(用望远镜或瞄准镜);

第二步:瞄准目标;

第三步:计算(或估测)风速、距离、空气湿度、空气密度;

第四步:根据第三步的结果修正弹着点;

第五步:开枪;

第六步:迅速转移(或隐蔽).

以上这种完成狙击任务的方法、步骤在数学上我们叫算法.

●课堂探究

预习提升

1.定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.

2.描述方式

自然语言、数学语言、形式语言(算法语言)、框图.

3.算法的要求

(1)写出的算法,必须能解决一类问题,且能重复使用;

(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.

4.算法的特征

(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.

(2)确定性:算法的计算规则及相应的计算步骤必须是确定的.

(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.

(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续.

(5)不性:解决同一问题的算法可以是不的.

高中数学教案 篇5

一、教学内容分析

向量作为工具在数学、物理以及实际生活中都有着广泛的应用.

本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.

二、教学目标设计

1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.

2、了解构造法在解题中的运用.

三、教学重点及难点

重点:平面向量知识在各个领域中应用.

难点:向量的构造.

四、教学流程设计

五、教学过程设计

一、复习与回顾

1、提问:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[说明]复习数量积的有关知识.

二、学习新课

例1(书中例5)

向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看

例2(书中例3)

证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.

证法(二)向量法

[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)

例3(书中例4)

[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.

二、巩固练习

1、如图,某人在静水中游泳,速度为 km/h.

(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?

答案:沿北偏东方向前进,实际速度大小是8 km/h.

(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?

答案:朝北偏西方向前进,实际速度大小为km/h.

三、课堂小结

1、向量在物理、数学中有着广泛的应用.

2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.

四、作业布置

1、书面作业:课本P73, 练习8.4 4

高中数学教案 篇6

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

3.分层抽样的步骤:

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为1人,其中持各种态度的人数如表中所示:

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

2.三种抽样方法相互之间的区别与联系.

高中数学教案 篇7

一、教学目标:

1、知识与技能:

(1) 结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、 过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

二、教学重点: 正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

四、教学过程

(一)新课导入

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;

(2)请你用图像表示1个细胞分裂的次数n( )与得到的细胞个数y之间的关系;

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数

分裂次数 1 2 3 4 5 6 7 8

细胞个数 2 4 8 16 32 64 128 256

(2)1个细胞分裂的次数 与得到的细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

(3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数. 细胞个数 与分裂次数 之间的关系式为 .细胞个数 随着分裂次数 的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量Q;

(2)用图像表示每隔20年臭氧含量Q的变化;

(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.

解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

(2)用图像表示每隔20年臭氧含量Q的变化,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道, 随着时间的增加,臭氧含量Q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数. 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少.

[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

正整数指数函数的定义:一般地,函数 叫作正整数指数函数,其中 是自变量,定义域是正整数集 .

说明: 1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 .写出 , 间的函数关系式,并求出经过5年,森林的面积.

分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式.

解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2

补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,, n个月后他应取回的钱数为y=2000(1+2.38%)n; 所以n与y之间的关系为y=2000(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.

补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。

高中数学教案 篇8

一、教学内容分析

1、教学主要内容

(1)平面向量数量积及其几何意义

(2)用平面向量处理有关长度、角度、直垂问题

2、教材编写特点

本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。

3、教学内容的核心教学思想

用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。

4、我的思考

本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。

二、学生分析

1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形

a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣

即a·b=∣a∣∣b∣cosθ理解并记忆。

对于cosθ= ,等的变形应用,同学们甚感兴趣。

2、我的思考

对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。

三、 学习目标

1、知识与技能

(1)掌握平面向量数量积及其几何意义。

(2)平面向量数量积的应用。

2、过程与方法

通过学生小组探究学习,讨论并得出结论。

3、情感态度与价值观

培养学生运算推理的能力。

四、教学活动

内容 师生互动 设计意图 时间 1、课题引入 师:请同学请回忆我们所学过的相关同里的运算。

生:加法、减法,数乘

师:这些运算所得的结果是数还是向量。

生:向量。

师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。 3min 2、平面向里的数量积定义 师:平面向星数量积(内积或点积)的定义:

已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab

②O与任何向量的数里积为O。 直接给出定义,可以让学习对新知识的求知数得到满足,并对新知识的探究有一个方向性。 5min 3、几何意义 师:同学们猜想

a·b=∣a∣∣b∣cosQ

用图怎么表示

生:a·b=∣a∣·∣b∣cosθ

=∣OM∣·∣OB∣

师:数里积a·b等于a的长度与b在a方向上的投影∣b∣cosθ的面积。

师:请同学们讨论数量积且有哪些性质

通过自己画图培养学生把问题转化到图形上,到图形上解决问题的能力。

5min 性 质 师:同学们a·b为非零向果,a·b=∣a∣·∣b∣cosθ。当θ=0°,90°,180°时,a·b有什么性质呢。

生:①当θ=90°时

a·b= a·b=∣a∣·∣b∣cosθ

②当a与b同向时

即θ= 0° ,则a·b=∣ a∣·∣b∣

当a与b反向时,

即θ= 180°,则a·b=∣ a∣·∣b∣

特别a·a=∣ a∣2 成 ∣ a∣= a·a

③∣a∣·∣b∣≤∣ a∣ ∣b∣

学生自己的探究性质,体会并深入理解向里数量的运算性质。 8min 生:①a·b= b·a(交换)

②(λa)·b=λ (a·b)

高中数学教案 篇9

《简单的逻辑联结词》

【学情分析】:

(1)“常用逻辑用语”是帮助学生正确使用常用逻辑用语,更好的理解数学内容中的逻辑关系,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流,避免在使用过程中产生错误。

(2)“常用逻辑用语”应通过实例理解,避免形式化的倾向.常用逻辑用语的教学不应当从抽象的定义出发,而应该通过数学和生活中的丰富实例理解常用逻辑用语的意义,体会常用逻辑用语的作用。对逻辑联结词“或”、“且”、“非”的含义,只要求通过数学实例加以了解,使学生正确地表述相关的数学内容。

(3)“常用逻辑用语”的学习重在使用.对于“常用逻辑用语”的学习,不仅需要用已学过的数学知识为载体,而且需要把常用逻辑用语用于后继的数学学习中。

(4)培养学生用所学知识解决综合数学问题的能力。

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“且”、“或”的含义;

(2)过程与方法目标:

了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的判断;

(3)情感与能力目标:

在知识学习的基础上,培养学生简单推理的技能.

【教学重点】:

通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容.

【教学难点】:

简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断.

【教学过程设计】:

教学环节 教学活动 设计意图

情境引入 问题1:

下列三个命题间有什么关系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除; 通过数学实例,认识用用逻辑联结词 “且”联结两个命题可以得到一个新命题;

知识建构 归纳总结:

一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

记作 ,读作“p且q”.

引导学生通过通过一些数学实例分析,概括出一般特征。

三、自主学习 1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题 ,判断真假,纠正可能出现的逻辑错误。 学习使用逻辑联结词“且” 联结两个命题,根据“且”的含义判断逻辑联结词“且” 联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:

当p,q都是真命题时, 是真命题,当p,q两个命题中有一个是假命题时, 是假命题,

学习使用逻辑联结词“且” 改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题 的真假性,概括出这三个命题的真假性之间的一般规律。

四、学生探究 问题2:

下列三个命题间有什么关系?判断真假。

(1)27是7的倍数;

(2)27是9的倍数;

(3)27是7的倍数或27是9的倍数; 通过数学实例,认识用用逻辑联结词 “或”联结两个命题可以得到一个新命题;

归纳总结

1.一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”,读作“p或q”.

2.当p,q两个命题中有一个命题是真命题时,“p∨q”是真命题,当p,q两个命题中都是假命题时,“p∨q”是假命题. 引导学生通过一些数学实例分析命题p和命题q以及命题“p∨q”的真假性,概括出这三个命题的真假性之间的一般规律。

三、自主学习 1、引导学生阅读教科书上的例3中每组命题p,q,让学生尝试写出命题“p∨q”,判断真假,纠正可能出现的逻辑错误。 学习使用逻辑联结词“或” 联结两个命题,根据“或”的含义判断逻辑联结词“或” 联结成的新命题的真假。

课堂练习 课本P17 练习1,2 反馈学生掌握逻辑联结词“或”的用法和含义的情况,巩固本节课所学的基本知识。

课堂小结 1、一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作 ,读作“p且q”.

2、当p,q都是真命题时, 是真命题,当p,q两个命题中有一个是假命题时, 是假命题.

3.一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”,读作“p或q”.

4.当p,q两个命题中有一个命题是真命题时,“p∨q”是真命题,当p,q两个命题中都是假命题时,“p∨q”是假命题. 归纳整理本节课所学知识。

布置作业 1. 思考题:如果 是真命题,那么p∨q一定是真命题吗?反之, 如果p∨q是真命题,那么 一定是真命题吗?

2. 课本P18 A组1,2.B组.

3. 预习新课,自主完成课后练习。(根据学生实情,选择安排)

课后练习

1.命题“正方形的两条对角线互相垂直平分”是( )

A.简单命题 B.非p形式的命题

C.p或q形式的命题 D.p且q的命题

2.命题“方程x2=2的解是x=± 是( )

A.简单命题 B.含“或”的复合命题

C.含“且”的复合命题 D.含“非”的复合命题

3.若命题 ,则┐p(  )

A. B.

C. D.

4.命题“梯形的两对角线互相不平分”的形式为( )

A.p或q B.p且q C.非p D.简单命题

5.x≤0是指 ( )

A.x0或x=0

C.x>0且x=0 D.x

6. 对命题p:A∩ = ,命题q:A∪ =A,下列说法正确的是( )

A.p且q为假 B.p或q为假

C.非p为真 D.非p为假

参考答案:

1. D 2.B 3.D 4.C 5.D 6.D

§1.3.2简单的逻辑联结词

【学情分析】:

(1)上节课已经学习了简单的逻辑联结词“且”、“或”的含义和简单运用,本节课继续学习简单的逻辑联结词“非”的含义和简单运用;

(2)一般地,对一个命题p全盘否定,就得到一个新命题,记作: p,读作“非p”或“p的否定”;了解和掌握“非”命题最常见的几个正面词语的否定:

正面

是 都是 至多有一个 至少有一个 任意的 所有的

否定

不是 不都是 至少有两个 一个也没有 某个 某些

(3)注意 “且”、“或” “非” 的含义和简单运用的区别和联系。

(4)培养学生用所学知识解决综合数学问题的能力。

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“非”的含义;

(2)过程与方法目标:

了解含有逻辑联结词“非”复合命题的概念及其构成形式,能对逻辑联结词“非”构成命题的真假作出正确判断;

(3)情感与能力目标:

能准确区分命题的否定与否命题的区别;在知识学习的基础上,培养学生简单推理的技能。

【教学重点】:

(1)了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容;

(2)区别“或”、“且”、“非”的含义和运用的异同;

【教学难点】:

(1)简洁、准确地表述“非”命题以及对逻辑联结词“非”构成命题的真假判断;

(2)区别“或”、“且”、“非”的含义和运用的异同;

【教学过程设计】:

教学环节 教学活动 设计意图

情境引入 问题1:如果 是真命题,那么p∨q一定是真命题吗?反之, 如果p∨q是真命题,那么 一定是真命题吗?

问题2:下列两个命题间有什么关系,判断真假.

(1)35能被5整除;

(2)35不能被5整除; 通过数学实例,认识用逻辑联结词“非”构成命题可以得到一个新命题;

知识建构 归纳总结:

(1)一般地,对一个命题全盘否定就得到一个新命题,

记作 ,读作“非P”;

(2)若P是真命题,则必是假命题; 若P是假命题,则必是真命题. 引导学生通过通过一些数学实例分析,概括出一般特征。

自主学习 1、引导学生阅读教科书上的例4中每组命题p让学生尝试写出命题 ,判断真假,纠正可能出现的逻辑错误.

学习使用逻辑联结词“非”构成一个新命题,根据“非”的含义判断逻辑联结词“非”构成命题的真假。

2:写出下列命题的非命题:

(1)p:对任意实数x,均有x2-2x+1≥0;

(2)q:存在一个实数x,使得x2-9=0

(3)“AB∥CD”且“AB=CD”;

(4)“△ABC是直角三角形或等腰三角形”.

解:(1)存在一个实数x,使得x2-2x+1

(2)不存在一个实数x,使得x2-9=0;

(3)AB不平行于CD或AB≠CD;

(4)原命题是“p或q”形式的复合命题,它的否定形式是:△ABC既不是直角三角形又不是等腰三角形.

学生探究 指出下列命题的构成形式及真假:并指出“或”、“且”、“非”的区别与联系.

(1) 不等式 没有实数解;

(2) -1是偶数或奇数;

(3) 属于集合Q,也属于集合R;

(4)

解:(1)此命题是“非p”形式,是假命题。

(2)此命题是“p∨q”形式,此命题是真命题。

(3)此命题是 “p∧q”形式,此命题是假命题。

(4)此命题是“非p”形式,是假命题。 通过探究,归纳总结判断“p且q”、 “p或q”、 “非p”形式的命题真假的方法。

归纳总结:

1.“p且q”形式的复合命题真假:

当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。(一假必假)

p q p且q

真 真 真

真 假 假

假 真 假

假 假 假

2.“p或q”形式的复合命题真假:

当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。(一真必真)

p q P或q

真 真 真

真 假 真

假 真 真

假 假 假

3.“非p”形式的复合命题真假:

当p为真时,非p为假; 当p为假时,非p为真.(真假相反)

p 非p

真 假

假 真

引导学生通过通过一些数学实例分析,概括出一般特征。

提高练习 1.分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假:

(1)p:2+2=5; q:3>2

(2)p:9是质数; q:8是12的约数;

(3)p:1∈{1,2}; q:{1} {1,2}

(4)p: {0}; q: {0}

解:①p或q:2+2=5或3>2 ;p且q:2+2=5且3>2 ;非p:2+2 5.

∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.

②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.

∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.

③p或q:1∈{1,2}或{1} {1,2};p且q:1∈{1,2}且{1} {1,2};

非p:1 {1,2}.

∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.

④p或q:φ {0}或φ={0};p且q:φ {0}且φ={0} ;非p:φ {0}.

∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假.

通过练习,使学生更进一步理解“p且q”、 “p或q”、 “非p”形式的命题的形式特点以及判断真假的规律,区别“非”命题与否命题。

课堂小结

(1)一般地,对一个命题全盘否定就得到一个新命题,

记作 ,读作“非P”;

(2)若P是真命题,则必是假命题; 若P是假命题,则必是真命题.

(3)1.“ p且q”形式的复合命题真假:

当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。(一假必假)

p q p且q

真 真 真

真 假 假

假 真 假

假 假 假

2.“p或q”形式的复合命题真假:

当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。(一真必真)

p q P或q

真 真 真

真 假 真

假 真 真

假 假 假

(

3.“非p”形式的复合命题真假:

当p为真时,非p为假; 当p为假时,非p为真.(真假相反)

p 非p

真 假

假 真

归纳整理本节课所学知识。反馈学生掌握逻辑联结词“且”的用法和含义的情况,巩固本节课所学的基本知识。

布置作业 1. 课本P18 A组3.

2. 见课后练习

课后练习

1.如果命题p是假命题,命题q是真命题,则下列错误的是( )

A.“p且q”是假命题 B.“p或q”是真命题

C.“非p”是真命题 D.“非q”是真命题

2.下列命题是真命题的有( )

A.5>2且74或3

C.7≥8 D.方程x2-3x+4=0的判别式Δ≥0

3.若命题p:2n-1是奇数,q:2n+1是偶数,则下列说法中正确的是 ( )

A.p或q为真 B.p且q为真 C. 非p为真 D. 非p为假

4.如果命题“非p”与命题“p或q”都是真命题,那么( )

A.命题p与命题q的真值相同 B.命题q一定是真命题

C.命题q不一定是真命题 D.命题p不一定是真命题

5.由下列各组命题构成的复合命题中,“p或q”为真,“p且q”为假,

“非p”为真的一组为( )

A.p:3为偶数,q:4为奇数 B.p:π3

C.p:a∈{a,b},q:{a} {a,b} D.p:Q R,q:N=Z

6. 在下列结论中,正确的是( )

① 为真是 为真的充分不必要条件;

② 为假是 为真的充分不必要条件;

③ 为真是 为假的必要不充分条件;

④ 为真是 为假的必要不充分条件;

A. ①② B. ①③ C. ②④ D. ③④

参考答案:

1. D 2.A 3.B 4.B 5.B 6.B

高中数学教案 篇10

教材分析

圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

教学目标

1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

教学重点难点

以及措施

教学重点:圆的标准方程理解及运用

教学难点:根据不同条件,利用待定系数求圆的标准方程。

根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

学习者分析

高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

教法设计

问题情境引入法 启发式教学法 讲授法

学法指导

自主学习法 讨论交流法 练习巩固法

教学准备

ppt课件 导学案

扩展阅读

高中数学教案


像一些喜庆的场合,每当到了这个时候,大家会互相道一声祝福,祝福语可以增进我们与他人的情感交流。让我们给大家送上无尽的祝福,你是否正在为没有祝福语送人而烦恼?小编特别从网络上整理了高中数学教案,还请你收藏本页以便后续阅读。

高中数学教案 篇1

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

重点是组合的定义、组合数及组合数的公式;

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

(教师活动)打出字幕,给出示范,指导训练.

[字幕]例1 列举从4个元素 中任取2个元素的所有组合.

(学生活动)板演、示范.

(教师活动)讲评并指出用两种方法计算例2的第2小题.

[字幕]例3 已知 ,求 的所有值.

(学生活动)思考分析.

[点评]这是组合数公式的应用,关键是公式的选择.

设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

(教师活动)给出练习,学生解答,教师点评.

[课堂练习]课本P99练习第2,5,6题.

[补充练习]

(学生活动)板演、解答.

设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

高中数学教案 篇2

1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习

2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!

5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!

6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!

7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!

8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!

9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。

高中数学教案 篇3

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂的性质进行化简、求值.

(1)分数指数幂及根式概念的理解.

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若xn=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质 的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的 特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

③负数没有偶次方根;0的任何次方根都是零.

上面的文字语言可用下面的式子表示:

a为正数:n为奇数, a的n次方根有一个为na,n为偶数, a的n次方根有两个为±na.

a为负数:n为奇数, a的n次方根只有一个为na,n为偶数, a的n次方根不存在.

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例.

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数.

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.

n为偶数,nan=|a|=a,-a,a≥0,a

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数.

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.

n为偶数,nan=|a|=a,-a,a≥0,a

例 求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

点评:不注意n的奇偶性对式子nan的值的影响 ,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.

(2)3(3a-3)3(a≤1);

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错.

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.

(3)a0=1是有条件的,即a≠0,故C项也错.

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例2 3+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.

若a2-2a+1=a-1,求a的取值范围.

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

即a-1≥0,

所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.

2.化简下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.

3.计算7+40+7-40=__________.

问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.

通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.

解:(1)(na)n=a(n>1,n∈N).

如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.

(2)nan=a,|a|,当n为奇数,当n为偶数.

当n为奇数时,a∈R,nan=a恒成立.

当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.

点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.

1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.

(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

(3)负数没有偶次方根.0的任何次方根都是零.

2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a

课本习题2.1A组 1.

(1)681;(2)15-32;(3)6a2b4.

(2)15-32=-1525=-32;

(3)6a2b4=6(|a|?b2)2=3|a|?b2.

3.5+26+5-26=__________.

解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.

(1)整数指数幂的运算性质是什么?

②a8=(a4)2=a4= ,;

③4a12=4(a3)4=a3= ;

④2a10=2(a5)2=a5= .

(3)利用(2)的规律,你能表示下列式子吗?

, , , (x>0,m,n∈正整数集,且n>1).

(4)你能用方根的意义来解释(3)的式子吗?

(5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10= ,②a8= ,③4a12= ,④2a10= 结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.

根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,453= ,375= ,5a7= ,nxm= .

(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 .

结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么am的n次方根可表示为nam= ,即 =nam(a>0,m,n∈正整数集,n>1).

综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1).

(1)负整数指数幂的意义是怎样规定的?

(2)你能得出负分数指数幂的意义吗?

(3)你认为应怎样规定零的分数指数幂的意义?

(4)综合上述,如何规定分数指数幂的意义?

(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合 自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.

(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈=N+,n>1).

(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.

(4)教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(5)若没有a>0这个条件会怎样呢?

如 =3-1=-1, =6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2= ,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.

例1 求值:(1) ;(2) ;(3)12-5;(4) .

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.

(2) =5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4) =23-3=278.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如 =382=364=4.

例2 用分数指数幂的形式表示下列各式.

a3?a;a2?3a2;a3a(a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.

a2?3a2=a2? = ;

a3a= .

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数 幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3 计算下列各式(式中字母都是正数).

(1) ;

(2) .

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

(2) =m2n-3=m2n3.

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.

本例主要是指数幂的运算法则的综合考查和应用.

(2)627m3125n64.

(2)627m3125n64= =9m225n4=925m2n-4.

例4 计算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0).

活动:先由学生观察以上两个式子的特 征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.

= =65-5;

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是( )

(4)把根式-25(a-b)-2改写成分数指数幂的形式为( )

A. B.

2.计算:(1) --17-2+ -3-1+(2-1)0=__________.

(2)设5x=4,5y=2,则52x-y=__________.

3.已知x+y=12,xy=9且x答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.又因为x活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:x-1= -13= ;x+1= +13= ;.构建解题思路教师适时启发提示.=a-b,=a± +b,=a±b.2.已知 ,探究下列各式的值的求法.(1)a+a-1;(2)a2+a-2;(3) .解:(1)将 ,两边平方,得a+a-1+2=9,即a+a-1=7;(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47;(3)由于 ,所以有 =a+a-1+1=8.点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:①ar?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q).(4)说明两点:①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用 =am来计算.本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题.(1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?… …(3)你能给上述思想起个名字吗?(4)一个正数的无理数次幂到底是一个什么性质的数呢?如 ,根据你学过的知识,能作出判断并合理地解释吗?(5)借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题(3)上述方法实际上是无限接近,最后是逼近.问题(4)对问题给予大胆猜测,从数轴的观点加以解释.问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般.讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.(2)第一个表:从大于2的方向逼近2时, 就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近.第二个表:从小于2的方向逼近2时, 就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面 从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近,而另一方面 从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近,可以说从两个方向无限地接近,即逼近,所以 是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示 的点靠近,但这个点一定在数轴上,由此我们可得到的结论是 一定是一个实数,即51.40,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?(3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:①ar?as=ar+s(a>0,r,s都是无理数).②(ar)s=ars(a>0,r,s都是无理数).③(a?b)r=arbr(a>0,b>0,r是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①ar?as=ar+s(a>0,r,s∈R).②(ar)s=ars(a>0,r,s∈R).③(a?b)r=arbr(a>0,b>0,r∈R).(1)0.32.1;(2)3.14-3;(3) ;(4) .活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按 键,再按3,最后按=键.有时也可按2ndf或shift键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.例2 求值或化简.(1)a-4b23ab2(a>0,b>0);(2) (a>0,b>0);(3)5-26+7-43-6-42.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)a-4b23ab2= =3b46a11 .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.==425a0b0=425.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.=3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3 已知 ,n∈正整数集,求(x+1+x2)n的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性, 与 具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.= .这时应看到1+x2= ,这样先算出1+x2,再算出1+x2,代入即可.所以(x+1+x2)n=== =5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.课本习题2.1A组 3.C. D.解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形.因为 ,所以原式的分子分母同乘以 .2.计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.=53+100+916-3+13+716=100.3.计算a+2a-1+a-2a-1(a≥1).解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a>0, ,则(x+1+x2)n的值为__________.这样先算出1+x2,再算出1+x2,将 代入1+x2,得1+x2= .所以(x+1+x2)n=参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂 的意义.活动:教师引导学生回顾无理数指数幂 的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算 的过剩近似值和不足近似值,利用逼近思想,“逼出” 的意义,学生合作交流,在投影仪上展示自己的探究结果.解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表.1.8 3.482 202 253 1.7 3.249 009 5851.74 3.340 351 678 1.73 3.317 278 1831.733 3.324 183 446 1.731 3.319 578 3421.732 1 3.322 110 36 1.731 9 3.321 649 8491.732 06 3.322 018 252 1.732 04 3.321 972 21.732 051 3.321 997 529 1.732 049 3.321 992 9231.732 050 9 3.321 997 298 1.732 050 7 3.321 996 8381.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045… … … …我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数21.7,21.72,21.731,21.731 9,…,同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为 ,即21.70,α是无理数) 是一个确定的实数.(2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①ar?as=ar+s(a>0,r,s∈R).②(ar)s=ars(a>0,r,s∈R).③(a?b)r=arbr(a>0,b>0,r∈R).无理数指数是指数概念的又一次扩充, 教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.若x≥2,则式子x-2x-1=x-2x-1成立.故选D.方法二:对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-10,∴x-1=0,即x=1.∴32+5+32-5=1.

高中数学教案 篇4

教材分析:

三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

教案背景:

通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

教学方法:

以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

教学目标:

借助单位圆探究诱导公式。

能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

教学重点:

诱导公式(三)的推导及应用。

教学难点:

诱导公式的应用。

教学手段:

多媒体。

教学情景设计:

一.复习回顾:

1. 诱导公式(一)(二)。

2. 角 (终边在一条直线上)

3. 思考:下列一组角有什么特征?( )能否用式子来表示?

二.新课:

已知 由

可知

而 (课件演示,学生发现)

所以

于是可得: (三)

设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

设计意图:结合学过的公式(一)(二),发现特点,总结公式。

1. 练习

(1)

设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

三.例题

例3:求下列各三角函数值:

(1)

(2)

(3)

(4)

例4:化简

设计意图:利用公式解决问题。

练习:

(1)

(2) (学生板演,师生点评)

设计意图:观察公式特点,选择公式解决问题。

四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

五.课后作业:课后练习A、B组

六.课后反思与交流

很荣幸大家来听我的课,通过这课,我学习到如下的东西:

1.要认真的研读新课标,对教学的目标,重难点把握要到位

2.注意板书设计,注重细节的东西,语速需要改正

3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

5.上课的生动化,形象化需要加强

听课者评价:

1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

4.评议者:引导学生通过网络进行探究。

建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

( 6)让学生多探究,课堂会更热闹

( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

( 8)教学模式相对简单重复

( 9)思路较为清晰,规范化的推理

高中数学教案 篇5

【教学目标】

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3.合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。有两个面互相平行;其余各面都是平行四边形;每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

5.典型例题

例:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

答案AB

6.课堂检测:

课本P8,习题1.1A组第1题。

7.归纳整理

由学生整理学习了哪些内容

高中数学教案 篇6

本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

1.理解组合的意义,掌握组合数的计算公式;

组合概念的理解和组合数公式;组合与排列的区别.

那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

其实亦可用另一种方法解决,这就是组合.

一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.

从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.

= = 这是为什么呢?

因为 构成有向线段的问题可分成2步来完成:

第一步,先从7个点中选2个点出来,共有 种选法;

第二步,将选出的2个点做一个排列,有 种次序;

用计算器求 、 、 、

可发现 = =

由此猜想:

用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有 ,就相当于挑46个人不参加长跑的选择方案 一样.“取法”与“剩法”是“一 一对应”的.

当m=n时,

此性质作用:当 时,计算 可变为计算 ,能够使运算简化.

可解释为:从 这n 1个不同元素中取出m个元素的组合数是 ,这些组合可以分为两类:一类含有元素 ,一类不含有 .含有 的组合是从 这n个元素中取出m (1个元素与 组成的,共有 个;不含有 的组合是从 这n个元素中取出m个元素组成的,共有 个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.

2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.

例2、应用题:

(2)平均分给3人;

(3)若平均分为3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.

学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.

排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.

在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.

本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.

在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.

在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.

高中数学教案 篇7

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.

(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

提问2:能用自己的语言描述一下这几个对应的共性吗?

经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高中数学教案 篇8

教学目标:1.进一步理解线性规划的概念;会解简单的线性规划问题;

2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;

3.进一步提高学生的合作意识和探究意识。

教学重点:线性规划的概念及其解法

教学难点:

代数问题几何化的过程

教学方法:启发探究式

教学手段:运用多媒体技术

教学过程:1.实际问题引入。

问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?

2.探究和讨论下列问题。

(1)实际问题转化为一个怎样的数学问题?

(2)满足不等式组①的条件的点构成的区域如何表示?

(3)关于x、y的一个表达式z=70x+50y的几何意义是什么?

(4)z的几何意义是什么?

(5)z的最大值如何确定?

让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即

x+y≤12

6x+4y≤60 ①

x≥0

y≥0

行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.

则zmax=6×70+6×50=720

结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.

解题反思:

问题解决过程中体现了那些重要的数学思想?

3.线性规划的有关概念。

什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.

4.进一步探究线性规划问题的解。

问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?

要求:请你写出约束条件、目标函数,作出可行域,求出最优解。

问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?

5.小结。

(1)数学知识;(2)数学思想。

6.作业。

(1)阅读教材:P.60-63;

(2)课后练习:教材P.65-2,3;

(3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。

《一个数列的研究》教学设计

教学目标:

1.进一步理解和掌握数列的有关概念和性质;

2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

教学重点:

问题的提出与解决

教学难点:

如何进行问题的探究

教学方法:

启发探究式

教学过程:

问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

研究方向提示:

1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2.研究所给数列的项之间的关系;

3.研究所给数列的子数列;

4.研究所给数列能构造的新数列;

5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1.研究一个数列可以从哪些方面提出问题并进行研究?

2.你最喜欢哪位同学的研究?为什么?

课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?

2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?

开展研究性学习,培养问题解决能力

一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。

“问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。

问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。

二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。

(一)关于“问题解决”课堂教学模式

通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。

(二)数学学科中的问题解决能力的培养目标

数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。

(三)“问题解决”课堂教学模式的教学流程

(四)“问题解决”课堂教学评价标准

1. 教学目标的确定;

2. 教学方法的选择;

3. 问题的选择;

4. 师生主体意识的体现;

5.教学策略的运用。

(五)了解学生的数学问题解决能力的途径

(六)开展研究性学习活动对教师的能力要求

高中数学教案 篇9

教学目标:

1。理解并掌握瞬时速度的定义;

2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;

3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。

教学重点:

会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。

教学难点:

理解瞬时速度和瞬时加速度的定义。

教学过程:

一、问题情境

1。问题情境。

平均速度:物体的运动位移与所用时间的比称为平均速度。

问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?

问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.

2。探究活动:

(1)计算运动员在2s到2.1s(t∈)内的平均速度。

(2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。

(3)如何计算运动员在更短时间内的平均速度。

探究结论:

时间区间

t

平均速度

0.1

-13.59

0.01

-13.149

0.001

-13.1049

0.0001

-13.10049

0.00001

-13.100049

0.000001

-13.1000049

当?t?0时,?-13.1,

该常数可作为运动员在2s时的瞬时速度。

即t=2s时,高度对于时间的瞬时变化率。

二、建构数学

1。平均速度。

设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。

可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。

三、数学运用

例1物体作自由落体运动,运动方程为,其中位移单位是m,时

间单位是s,,求:

(1)物体在时间区间s上的平均速度;

(2)物体在时间区间上的平均速度;

(3)物体在t=2s时的瞬时速度。

分析

(1)将?t=0.1代入上式,得:=2.05g=20.5m/s。

(2)将?t=0.01代入上式,得:=2.005g=20.05m/s。

(3)当?t?0,2+?t?2,从而平均速度的极限为:

例2设一辆轿车在公路上作直线运动,假设时的速度为,

求当时轿车的瞬时加速度。

∴当?t无限趋于0时,无限趋于,即=。

练习

课本P12—1,2。

四、回顾小结

问题1本节课你学到了什么?

1理解瞬时速度和瞬时加速度的定义;

2实际应用问题中瞬时速度和瞬时加速度的求解;

问题2解决瞬时速度和瞬时加速度问题需要注意什么?

注意当?t?0时,瞬时速度和瞬时加速度的极限值。

问题3本节课体现了哪些数学思想方法?

2极限的思想方法。

3特殊到一般、从具体到抽象的推理方法。

五、课外作业

高中数学教案 篇10

一、内容和内容解析

本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。

就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。

二、教学目标和目标解析

教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。

在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。

学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。

进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。

通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。

三、教学问题诊断

在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。

另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b>0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。

四、教学支持条件分析

为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3D技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。

五、教学设计流程图

教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。

六、教法和预期效果分析

本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。

同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。

通过这节课的学习,引领学生多角度、多方位地认识基本不等式,并了解它的几何意义充分渗透数形结合的思想;能在教师的引导下,主动探索并了解基本不等式的证明过程,强化证明的各类方法;

会用基本不等式解决简单的(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。

高中数学教案 篇11

第一章:空间几何体

1.1.1柱、锥、台、球的结构特征

一、教学目标

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本P8,习题1.1A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7练习1、2(1)(2)

课本P8习题1.1第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本P8练习题1.1B组第1题

课外练习课本P8习题1.1B组第2题

1.2.1空间几何体的三视图(1课时)

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2空间几何体的直观图(1课时)

一、教学目标

1.知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点

重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具

1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规

四、教学思路

(一)创设情景,揭示课题

1.我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

练习反馈

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影

投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本P16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1.书画作业,课本P17练习第5题

2.课外思考课本P16,探究(1)(2)

2024中班数学教案推荐十一篇


关于“中班数学教案”编辑为您搜集了些许信息,我们希望您能对我们的网站持续关注并收藏它。每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。教案是学生学习过程中的辅助工具。

中班数学教案(篇1)

【活动目标】

1、学习对所抓的物体进行分类和记录。

2、愿意倾听并尝试用别人的方法,体验活动的快乐。

3、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。

4、培养幼儿相互合作,有序操作的良好操作习惯。

【活动准备】

教具:红枣、芸豆、花生;记录单、笔、黑板。

学具:小碗(内装红枣、花生、芸豆若干)、记录单、笔。

【活动过程】

1、导入

师:今天,有三个好朋友要和我们玩游戏了。都有谁呢?(依次出示花生、芸豆、红枣实物)它是谁啊?出示记录纸,花生宝宝藏在哪?(在记录纸上找出花生、芸豆、红枣图片)

2、介绍游戏玩法

师:我们来玩个游戏吧,名字叫“抓抓乐”。怎么玩呢?抓一把,数一数,记一记,记在哪呢?(教案出自:快思)(记在对应的格子里)怎么记呢?用什么符号记呢?(用小圆圈记)想不想玩呢?

3、幼儿自主游戏

师:每人试着抓一把,数一数,记一记。

幼儿进行抓抓乐,数清楚并记录。

4、交流操作方法

引导幼儿相互交流自己的方法。

师:你是怎么玩这个游戏的,谁愿意把你的好方法介绍给大家?

师小结:有的小朋友先分类,把花生放在一起,芸豆放在一起,红枣放在一起。再数花生有几粒,芸豆有几粒,红枣有几粒。有的小朋友抓一把后先把花生都找出来数一数有几粒,接着把芸豆找出来数数有几粒,最后数剩下的红枣有几粒。

5、幼儿再次游戏

(1)师:请小朋友再玩一次,试着用别人的方法去数清楚,抓出的每种东西各有多少?

幼儿再次游戏,鼓励幼儿乐意尝试用别人的方法来数。

(2)幼儿相互交流自己的操作结果。

教学反思:

数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。

中班数学教案(篇2)

活动目标:

1、学习6以内的序数,能从不同方位正确判断。

2、体验数学活动的乐趣,分享成功的喜悦和快乐。

活动准备:

1、小猴6个,横排格子,竖排格子,横竖混合排列的房子。

2、电影票每人一张,幼儿操作题卡若干份。

活动过程:

(一)情境导入

师:今天天气真好,小猴子们要坐汽车去公园玩,小猴子们该怎么上车呢?(出示横排排列的格子)

幼:一个一个的上,排队上。

师:我们先来给小猴子排排队。

请一名幼儿为小猴子排队,教师与幼儿一起说出各色小猴子在第几个。

(二)引导幼儿感受不同方向物体的排列次序。

1、感受“从左到右”和“从右到左”的排列次序。

师:公园到了,小猴子们都去公园玩了,但淘气的小蓝猴还藏在车厢里跟小朋友们玩捉迷藏呢。

师:小蓝猴,小蓝猴你在哪里?我藏在第四个车厢里,

你们快来找我。

请举手的幼儿上前找猴子,并说明找猴子的方法是从左到右。

师:我们做一个什么样的标识就可以知道,小朋友是从左向右数的呢?

幼:红旗、小点等。

师:老师这有一个办法,你们来看看这个办法行不行。师:(教师出示箭头)你们认识它是谁么?

幼:箭头

师:(将箭头贴在格子上方)我把箭头贴在这里,它指的方向就是从左到右。

师:小蓝猴藏在第4个车厢,我们再来找一找。

请举手的幼儿上前找猴子,说明找猴子的方法是从右到左并将箭头贴在合适的位置。

师:都是第四,为什么车厢不一样?

幼:因为一个是从左到右数,一个是从右到左数。

2、感受“从上到下”和“从下到上”的排列次序。师:(出示竖排排列的格子)瞧,淘气的小蓝猴藏在攀登架上,我们一起来找找。

小朋友和教师一起问:“小蓝猴,小蓝猴你在哪里”

师:我藏在第4个攀登架上

请举手的幼儿上前找猴子,说明找猴子的方法是从上到下并将箭头贴在合适的位置。

师:有谁找的和他的不一样?

请举手的幼儿上前找猴子,说明找猴子的方法是从下到上并将箭头贴在合适的位置。

师:都是第四,为什么位置不一样?

幼:一个是从上到下数,一个是从下到上数。

3、感受“上下左右”的排列次序。

师:(出示横竖混合排列的房子)小蓝猴说:“小朋友们我玩累了,你们能把我送回家么?”

幼:能

师:瞧,小猴子的家呀,就在这些房子中,想知道小猴子住的是哪个房子么?

幼:想

师:我们一起来问问小蓝猴,“小蓝猴,小蓝猴你的家在哪里呀?”

师:我的家就住在,从左往右数第3个,从右往左数第4个,从上往下数第3个,从下往上数第4个,你们听清楚了么?

幼:听清楚了。

师:为了更快的找到小猴子的家,老师给每位小朋友准备了一份题卡。(出示题卡并讲解)

要求:按照箭头方向和数字找到房子,并在找到的房子上用水彩笔作记号。

幼儿操作,教师指导

师:请每组幼儿代表对照题卡,在黑板上标出找到的房子。

师:瞧,发现了什么?

幼:找到的都是同一个房子。

师:从不同方向,不同序数,找到的房子有可能是一样的。

三:拓展应用

师:小朋友们帮小猴子找到了家,小猴子可高兴了,邀请小朋友们看电影,看电影之前我们先来认识一下、电影票吧。

师:小朋友们来看看这些电影票有什么不同?

幼:数字、箭头方向、箭头颜色。

师:请小朋友们到老师这排队领票,根据电影票找到自己的座位,音乐停止后就在自己的座位上做好。

幼儿听音乐找座位,音乐停止幼儿互相检查找到的座位是否正确。

中班数学教案(篇3)

活动目标:

1、复习10以内的加减运算,掌握“猜棋子”和“抽乌龟”游戏的玩法。

2、能不借助于食物进行运算活动,有一定的逻辑思维能力。

3、能与同伴有好的合作游戏,感受数学活动有趣和快乐。

活动准备:

幼儿已学过10以内各数的加减。

数字卡片;数字为1——10的牌各2——4张,箩筐若干

活动过程:

1、争夺冠军师:打雷和闪电比赛跑步,结果谁先让人们知道要下雨了?今天我们大家也来举行比赛,看谁是胜利者,你愿意参加吗?

2、比赛活动一:扑克抽乌龟师幼共同介绍游戏玩法:两人一起玩,先观察桌子中间的得数卡,两人从箩筐中取出牌,将牌的背面朝上,从中抽一张牌做乌龟,压在篓子下,不能看见篓子下面的数字。接着轮流取牌,取完后将自己手中加起来是10的两张牌放在自己桌面上,接着比较手中的牌多少,牌少的人抽一张同伴的牌,如果能和自己手中的牌加起来是10,就将两张牌放到桌子上,如不能,则同伴抽牌。依次轮流抽牌。最后剩下一张牌(如2)请拿牌的人猜一猜“乌龟”是几,并说说为什么(如:10减2等于8)。两人将“乌龟”翻开,验证猜的是否正确。

3、比赛活动二:猜棋子师(出示棋子):还有一个“猜棋子”游戏,谁能算出正确的结果,谁就是胜利者。

是有共同介绍游戏规则:两人一起玩,先观察桌子中间的得数卡,两人根据总数卡上的数字,取相等量的棋子,一人将棋子放在自己的两只手中并握成拳请同伴猜另一只手上有几只棋子,每次猜完都要说一说为什么。

4、请幼儿反馈游戏玩法,帮助幼儿了解、掌握游戏规则。

5、小组操作活动。

幼儿自由结伴,两人一组,选择游戏。

教师观察幼儿游戏情况,适时给幼儿帮助和指导,鼓励幼儿友好地与同伴协商合作。引导幼儿看清数卡,用加减的方法进行猜测,复习巩固10以内各数的加减。

中班数学教案(篇4)

本次活动教学内容是在幼儿学习两种物体的不同排序方法的教学内容基础上展开的教学。根据本班幼儿的实际学习情况和对教材要求的了解,我拟定了这节课的活动目标为:尝试用两种颜色的花片按一定规律排序,初步掌握两种物品的不同排序规律和方法。感受多种有趣的排序现象,体验排序在生活中的运用。根据本次活动的教学任务,我认为本活动的重点是让幼儿掌握两种物品的不同排序方法。难点是封闭性圆的排序。整节课教学设计努力遵循“教师为主导、学生为主体、情境为主线、活动为梳心”的原则,让幼儿积极主动地参与教学的全过程,通过“设计花边”、“做皇冠”、“观察镜中的排序”、 “制作生日礼物”等活动,让幼儿在玩中学,学中玩,为幼儿学得轻松、学得愉快,幼儿的积极性、主体性得到充分的表现,真正成为学习的主人。同时在课堂教学中,注重保护幼儿的意见,开发幼儿的创造力,鼓励幼儿善于发现与众不同的现象。

中班数学教案(篇5)

中班数学教案:学习10以内的序数

活动目标:

1.学习序数1"10,理解序数的方向性,正确使用序数词表述物体的排列次序。

2.培养幼儿序数的兴趣。

活动准备:准备贴绒教具:10个不同的小动物,有10层10个房间的楼房图片一幅。10只企鹅图片,10条小鱼图片。

活动重点:学习从不同的方向准确辨别物体的排列位置。

活动难点:自己确定方向并能准确找出位置。

活动方法:游戏法、讲解法、引导法。

活动时间:1课时

活动过程:

一、幼儿随音乐《开火车》进活动室。咱们小朋友开着小火车来了,小动物幼儿园的小动物也来了,不信你看,他们排着整齐的队来了。

二、小动物们多神气,排着整齐的横队向我们走来。请小朋友看一看从左向右排,每只小动物排第几?请小朋友看一看从右向左排,每只小动物排第几?

教师提问:

a.从左向右排第5个小动物是谁?

b.从右向左排第3个小动物是谁?

2.看小动物们变成纵队向我们走来。请小朋友说说从上向下排每个小动物排第几?请小朋友说说从下向上排每个小动物排第几?

教师提问:

a.从上向下排小猪排第几?

b.从下向上排第5的小动物是谁?

三、小动物们都累了,我们一起把它们送回家吧!(教师出示楼房图片)

(1)我们先数数这栋楼房共有几层?再数数每层有几个房间?

(2)教师提出要求,请小朋友将小动物送回家。

a.小猫住在第4层,从左边数第5间房子;

b.小兔住在第10层,从右边数第9间房子;

c.小猪住在第6层,从左边数第10间房子;

四、刚才小动物们的队排得太好了。有一种小动物,它们生活在冰天雪地的南极,走路总是摇摇摆摆排成一队,你们猜它们是谁?瞧!它们来了。唉!由于小企鹅走得太急,有的排错了队,有的掉了队

a.我们一起看看第几号企鹅派错了队?

b.第几号小企鹅掉了队?找一找,它在哪儿?

5.小企鹅饿了,它们要下海捉鱼吃。看!吓得小鱼争先逃命,冲散了队。看一看,第几条鱼没编号?它应该排第几?

五、结束部分:

小朋友们学习了10以内的序数,能从不同的方向辨别10以内的序数。现在我们一起玩个游戏——乘火车。

中班数学教案(篇6)

作为一位无私奉献的人民教师,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?以下是小编为大家收集的《认识厚薄》中班数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

【活动目标】

1、感知6以内的数。

2、通过观察比较正确认识和区分物体的高矮和厚薄,能将物体按高矮和厚薄排序。

3、在比较的过程中,逐步养成仔细观察的习惯。

4、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。

5、有兴趣参加数学活动。

【活动准备】

教具:图片,厚薄不一的书5本。

学具:幼儿用书第32页,笔。

【活动过程】

1、集体活动。

(1)巩固认识高矮,按高矮排队。

请三位高矮不同的幼儿站到前面来,让大家观察比较,可以由高到矮或由矮到高有序地排队。

再请5—6位高矮不同的幼儿上来,让他们目测比较高矮排序。

(2)认识厚薄。

出示厚薄不一样的书本,提问:这里有什么?有多少?它们有什么不一样?启发幼儿用比较和目测的方法认识书本的厚薄,再请幼儿上来比一比排一排,学习按厚薄给书本排序。(从薄到厚、从厚到薄。)

2、操作活动。

(1)引导幼儿看图说一说:图上有什么?哪个厚?哪个薄?并认读汉字:厚薄,并在厚书旁边的圆圈里图上黄颜色。

(2)观察比较彩色格子的长短,说说:哪个颜色的格子最长?哪一种最短?并按从长到短的.顺序在右边的格子里写上写上数序。

(3)启发幼儿按数序提示给格子涂色。

3、活动评价。

让幼儿讲述自己的操作材料,教师表扬正确排序并大声讲述的幼儿。

教学反思:

此次活动圆满结束!活动前我为幼儿创设了宽松自由的活动氛围,让幼儿在宽松自由的氛围中轻松获得锻炼与提高。活动过程中,幼儿表现的积极主动,都能用较完整的语言回答老师提出的问题,并能主动与同伴交流。

中班数学教案(篇7)

活动目标:

1、能不受物体排列形式的影响判断物体的多少,认识数的不变性。

2、能熟练运用对应排列的方法判断出多少,并且灵活运用变成一样多的方法,培养思维的灵活性。

3、学习用记录的方法比较物体多少的方法。

4、培养幼儿比较和判断的能力。

5、有兴趣参加数学活动。

活动准备:

气球、灯笼图片若干;画有多少不一两组物体的卡片。

不同颜色的积木若干。

幼儿操作用白纸、彩笔。每人一份不同颜色的积木。

活动过程:

一、游戏:师举画有多少不一两组物体的卡片,请幼儿快速判断,如果是一样多的,就把手举过头顶;如果是不一样多的,就把手抱住膝盖。比比谁的反应最快。

二、动物王国的迎国庆联欢会正在热热闹闹地准备着,这几天长颈鹿和大象可忙坏了。大象力气大负责吹气球,瞧,它吹了好多气球。出示红气球(6个)绿气球(5个)

1、请幼儿分类并且对应排列

2、比比两种气球是否一样多,哪种颜色的气球多(少),多(少)几个?怎样才能使他们一样多?

打乱对应排列的形式,如:不绿气球挤在一起或把红气球变

成竖形排列,问:现在红气球和绿气球是不是一样多?(引导幼儿知道不管怎么排列它们的数量没有变化)

三、长颈鹿脖子长,它负责挂灯笼,它第一次挂上了4个红灯笼,第二次挂上了6个灯笼(两排对应排列)

1、两次挂得是否一样多?多(少)多少?

2、怎样才能使两次挂得数量一样多?(去掉多的两个、加上两个或多的给少的一个)

四、为了招待客人,它们还准备了许多积木。它们分别是什么颜色的(红、绿、黄),这些不同颜色的积木也想来比多少,怎么办?(幼儿自由回答)

1、示范教幼儿对应记录比较的方法。如红的和绿的比较,先确定记录符号,红的用红圆圈表示,绿的用绿圆圈表示。记录时,拿一个记录一个,强调要对应排列,进行比较。(师生共同记录)

2、请幼儿进行记录:红的和黄的比较(教师边出示幼儿边记录)。分别用红笔和黄笔作记录。

3、请幼儿拿自己的一份积木,边拿边记录。得出比较结果。

中班数学教案(篇8)

作为一无名无私奉献的教育工作者,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写呢?下面是小编为大家收集的中班《漫游魔术王国》数学教案,欢迎阅读与收藏。

活动目标:

1.通过对比,让幼儿感知图形、三角形、正方形的基本特征,并正确区分。

2.游戏环节运用多种感观来调动幼儿的思维、想象能力,发展幼儿观察能力。

3.激发幼儿探索欲望。

4.培养幼儿比较和判断的能力。

5.发展幼儿逻辑思维能力。

活动准备:

纸箱(魔法箱);圆形、三角形、正方形的卡片;三幅图画(图形拼成的);小蜜蜂、小狗和小鸽子的头饰;魔术卡片。

活动过程:

(一)导入(语言导入):

1.手指游戏(集中幼儿注意力)

"咕噜咕噜锤;咕噜咕噜叉;咕噜咕噜一个变成三;三变五,五变八;八八八,看谁是个乖娃娃。"

2.教师:小朋友今天老师要带你们到魔术王国去,那里能变出好多好多有趣的东西。

(二)摸一摸"魔术箱"

教师:魔术王国里有一个奇妙的魔术箱,你们看,就是这个魔术箱(出示魔术箱)你们想不想知道这个魔术箱里藏的什么?

(1)教师:魔术箱里东西多,让我先来摸一摸,摸出来看看是什么?(摸出正方形的盒子)这是什么?它是什么形状的?为什么说它是正方形的?生活中还有哪些东西是正方形的?

(2)教师:魔术箱里东西多,我请某某小朋友摸一摸。(分别请两位小朋友,摸出圆形镜子和三角板,教师同上提问,游戏反复进行)

(3)教师总结:魔术箱有正方形的盒子、圆形的镜子、三角形的三角板。(边说边指相应的物品)

(三)魔法口诀

教师:教师这儿有三个魔法口诀,可以帮助你们又快又准的认出三角形、圆形和正方形,仔细听。

(1)"三条边,三个角,像座小山立得牢"这是什么图形呀?让我们来看看是不是三角形(拿出三角形卡片教具观察并重复口诀),这么奇妙的`魔法口诀,你们想不想学啊?跟老师说一遍,三条边,三个角,像座小山立得牢。大家一起说一遍。

(2)"圆溜溜,没有角,滚来滚去真能跑"这是什么图形呀?那小朋友们见过哪些滚来滚去的圆?让我们一起来说一遍口诀,圆溜溜,没有角,滚来滚去真能跑。我们来看看下一个口诀。

(3)"四条边一样长,四个角一样大,方方正正本领好"大家一起来说是什么图形?(拿出正方形卡片教具观察并重复口诀)下面我请一位小朋友来说一说口诀。

(四)游戏"谁的本领大"

教师:小朋友们都记住这三个魔法口诀的吗?那老师要考考你们了,老师用魔法把正方形、三角形和圆形藏到了图片里,看看哪个小朋友本领大,能把它们全找出。(逐一展示并结合提问魔法口诀)

(五)游戏"小动物找家"

教师:小朋友们本领真大,把圆形、三角形和正方形都找了出来,那我们能不能再帮助魔术王国迷路的小动物们找到家呢?

(1)教师带着小蜜蜂的头饰"小朋友们好,我是小蜜蜂,我找不到家了,我的家有三条边,三个角,像座小山立得牢,你们能帮我找到家吗?"小朋友们小蜜蜂说它的家是什么样子的?那是什么形状的?

(2)小朋友们看这是谁啊?(小朋友:小狗)我们听听小狗的家是什么样子的吧。教师带小狗的头饰"小朋友们,我的家是四条边一样长,四个角一样大,方方正正本领好",小狗是怎么说的?它的家是什么形状的?

(3)同上,鸽子家是圆溜溜,没有角,滚来滚去真能跑。

好,下面小朋友们上来把手中迷路的小动物送回家吧。

(4)教师:刚刚是哪位小朋友帮小蜜蜂送回家的?你是怎么找到小蜜蜂的家的,它的家是什么样子?(依次提问并巩固魔法口诀)

(六)游戏"魔法礼物"

教师:小动物们都找到家了,它们给我们送来了魔法礼物,我们一起看看吧。

展示魔术

老师把这个魔法礼物放到区角,小朋友们一起分享着玩,好不好?

(七)活动延伸

教师:小朋友们今天我们再魔法王国认识了哪些图形宝宝啊?(结合魔法口诀巩固)小朋友们都认识了圆形、三角形和正方形,今天回家都看看家里还有什么东西是圆形、三角形和正方形的,明天来告诉老师和其他小朋友好不好?

教学反思:

通过本次教学活动,让我了解了孩子对数学都很薄弱,为了能够使他们对数学感兴趣,我准备在以后的数学活动中多加游戏,做到让幼儿在玩中乐、玩中学的目的。真正让幼儿成为学习的主人,不断提升幼儿的自主探究能力。

中班数学教案(篇9)

活动目标

1、学习对所抓的物体进行分类和记录。

2、愿意倾听并尝试用别人的方法,体验活动的快乐。

3、激发幼儿学习兴趣,体验数学活动的快乐,并感受集体活动的乐趣。

4、初步培养观察、比较和反应能力。

活动准备

教具:红枣、芸豆、花生;记录单、笔、黑板。

学具:小碗(内装红枣、花生、芸豆若干)、记录单、笔。

活动过程

1、导入

师:今天,有三个好朋友要和我们玩游戏了。都有谁呢?(依次出示花生、芸豆、红枣实物)它是谁啊?出示记录纸,花生宝宝藏在哪?(在记录纸上找出花生、芸豆、红枣图片)

2、介绍游戏玩法

师:我们来玩个游戏吧,名字叫“抓抓乐”。怎么玩呢?抓一把,数一数,记一记,记在哪呢?(记在对应的格子里)怎么记呢?用什么符号记呢?(用小圆圈记)想不想玩呢?

3、幼儿自主游戏

师:每人试着抓一把,数一数,记一记。

幼儿进行抓抓乐,数清楚并记录。

4、交流操作方法

引导幼儿相互交流自己的方法。

师:你是怎么玩这个游戏的,谁愿意把你的好方法介绍给大家?

师小结:有的小朋友先分类,把花生放在一起,芸豆放在一起,红枣放在一起。[.来源快思老师]再数花生有几粒,芸豆有几粒,红枣有几粒。有的小朋友抓一把后先把花生都找出来数一数有几粒,接着把芸豆找出来数数有几粒,最后数剩下的红枣有几粒。

5、幼儿再次游戏

(1)师:请小朋友再玩一次,试着用别人的方法去数清楚,抓出的每种东西各有多少?

幼儿再次游戏,鼓励幼儿乐意尝试用别人的方法来数。

(2)幼儿相互交流自己的操作结果。

教学反思:

幼儿的兴趣非常浓,能积极回答老师的问题,但在幼儿讨论的这个阶段,我应该创设情景,让幼儿体验。我会多看看多学学,让以后的教学活动能够更好。

中班数学教案(篇10)

活动目标:

1.练习弹跳和钻爬的动作,提高身体的协调性。

2.与同伴一起体验种花游戏(带来)的快乐。

活动准备:

1.场地上布置小河(绳子)山洞(塑料钻圈)、小山(跨栏)等障碍物。

中班健康活动《我们去种花》2.花的道具、小兔头饰若干。教师自备游戏音乐。

活动过程:

一、小兔子来了。

1.听音乐(听口令),做热身运动。

小兔子们,今天天气真好,一起跟兔妈妈在草地上玩一玩吧!(师幼听音乐(听口令)进行全身运动,加人撒花籽、浇水、捉虫的情节,着重做下肢动作。)

二、爱跳的小兔。

1.自主练习弹跳动作。

小兔子是怎么跳的?(请个别幼儿示范,引导幼儿归纳动作要领:跳时两脚并拢向前,前脚掌轻轻着地。)

2.我们一起来比一比。

以师幼比赛、男女追逐等形式进行集体练习若干遍。(教师及时鼓励落地动作轻巧的幼儿。)

三、小兔“种花”。

1.教师引导幼儿回忆种花过程,交代游戏玩法。

春天到了,小朋友们想要拥有美丽的花朵吗?那我们怎样オ能种出漂亮的花朵来呢?(引导幼儿梳理撒花籽、浇水、捉虫、摘花跑回4个环节。)

2.个别幼儿尝试动作,教师观察指导。

现在我们分成4组,一起去种花。记住,一定要按照我们刚才说过的要求,这样才能种出更加美丽的花朵。

3.幼儿分成若干组,开展游戏。

小朋友要记住跳过“小河”,钻过“山洞”,翻过“小山”来到“草地”上。第一次撒花籽,第二次浇水,第三次捉虫,第四次摘花跑回。

4. 幼儿游戏两遍。(第一次游戏后,教师要简单总结游戏情况,并提出下次游戏活动的要求,然后进行第二次游戏。)

四、小兔回家。

1.教师简单评价,表扬动作完成规范的幼儿。

2.幼儿听音乐(听口令),做放松动作。

3.师幼共同整理活动场地,结束活动。

五、活动延伸

1.师幼一起展开想象,讲述兔子种花的故事。

2.一起养护自然角、种植园地的植物。

反思:

以游戏情节贯穿始终的体育活动,幼儿的参与积极性会更高。将种花情节植入热身活动,为下面的游戏做铺垫。练习的过程也可以讲究趣味性,鼓励幼儿自己总结动作要领。

中班数学教案(篇11)

活动目标:

1、让幼儿发现、再现物体的排列规律,学习不同的排序方法。

2、培养幼儿的观察力、思维力,体验物体之间的空间关系。

3、培养幼儿的观察力、判断力及动手操作能力。

4、培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性

5、引发幼儿学习的兴趣。

活动重点难点:

活动重点:

让幼儿发现、再现物体的排列规律,学习不同的排序方法。

活动难点:

培养幼儿的观察力、思维力,体验物体之间的空间关系。

活动准备:

1、彩旗图片一张,磁性蝴蝶、小狗、小兔,红黄蓝皮球若干。

2、雪花片若干。

3、几何图片一张。

活动过程:

一、活动开始。

老师:小朋友们好,今天啊老师给小朋友们准备了一些彩旗,我们来看看都有什么颜色的彩旗吧!

(出示彩旗图片)

老师:这些漂亮的彩旗都有什么颜色啊,我们一起来说一说。

(幼儿回答)

老师:小朋友们说的真好,接下来我们看看这些彩旗都是怎么排的啊?有没有谁发现了彩旗排列的规律呢?

(引导幼儿观察彩旗的排列顺序,并说一说彩旗是怎么排列的。)

老师:小朋友们再看看有谁来啦?它们的队伍是怎样排列的?接下去应该怎么排?

(请个别幼儿示范操作。)

老师:有小客人来了我们可以请它们玩好玩的皮球。

(出示皮球)

老师:这些皮球有红色黄色和蓝色,彩旗和小动物都是有规律排队的,这些皮球可以怎么排呢?

(幼儿回答)

二、基本部分。

老师:小动物们玩的很高兴,现在他们要回家了,我们送一串项链给它们好吗?

(出示画有几何图形的图纸,引导幼儿发现其中的规律,然后接着把项链做完。)

老师:好了,现在请小朋友来看一看,(本文.来源:.教案网)制作好看的项链吧,要看清楚颜色规律哦。

三、活动结束。

1、展示幼儿的作业,评价幼儿的作业,请幼儿将项链送给小动物。

2、收拾活动材料。

老师:在以后的区域活动中小朋友们可以在数学区拿到我们的雪花片来排一排,要记得用不同颜色的雪花片排哦。

2024高中数学教案


老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。教案是推动学校有机更新的有效手段,如何写出让自己满意教案课件?关于与“高中数学教案”相关的议题是本文的主题,如果这个网站给您带来了帮助请动手收藏以备不时之需!

高中数学教案【篇1】

[核心必知]

1、预习教材,问题导入

根据以下提纲,预习教材P6~P9,回答下列问题、

(1)常见的程序框有哪些?

提示:终端框(起止框),输入、输出框,处理框,判断框、

(2)算法的基本逻辑结构有哪些?

提示:顺序结构、条件结构和循环结构、

2、归纳总结,核心必记

(1)程序框图

程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、

在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、

(2)常见的程序框、流程线及各自表示的功能

图形符号名称功能

终端框(起止框)表示一个算法的起始和结束

输入、输出框表示一个算法输入和输出的信息

处理框(执行框)赋值、计算

判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”

流程线连接程序框

○连接点连接程序框图的两部分

(3)算法的基本逻辑结构

①算法的三种基本逻辑结构

算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的

②顺序结构

顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:

[问题思考]

(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?

提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、

(2)顺序结构是任何算法都离不开的基本结构吗?

提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、

[课前反思]

通过以上预习,必须掌握的几个知识点:

(1)程序框图的概念:

(2)常见的程序框、流程线及各自表示的功能:

(3)算法的三种基本逻辑结构:

(4)顺序结构的概念及其程序框图的表示:

问题背景:计算1×2+3×4+5×6+…+99×100。

[思考1]能否设计一个算法,计算这个式子的值。

提示:能。

[思考2]能否采用更简洁的方式表述上述算法过程。

提示:能,利用程序框图。

[思考3]画程序框图时应遵循怎样的规则?

名师指津:

(1)使用标准的框图符号。

(2)框图一般按从上到下、从左到右的方向画。

(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。

(4)在图形符号内描述的语言要非常简练清楚。

(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。

高中数学教案【篇2】

一、教学目标:

1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。

2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、

概括等逻辑思维能力。

3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。

二、重点:等比数列的性质及其应用。

难点:等比数列的性质应用。

三、教学过程。

同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。

数列名称 等差数列 等比数列

定义 一个数列,若从第二项起 每一项减去前一项之差都是同一个常数,则这个数列是等差数列。 一个数列,若从第二项起 每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。

定义表达式 an-an-1=d (n≥2)

(q≠0)

通项公式证明过程及方法

an-an-1=d; an-1-an-2=d,

…a2-a1=d

an-an-1+ an-1-an-2+…+a2-a1=(n-1)d

an=a1+(n-1)__d

累加法 ; …….

an=a1q n-1

累乘法

通项公式 an=a1+(n-1)__d an=a1q n-1

多媒体投影(总结规律)

数列名称 等差数列 等比数列

定 义 等比数列用“比”代替了等差数列中的“差”

定 义

达 式 an-an-1=d (n≥2)

通项公式证明

迭加法 迭乘法

通 项 公 式

加-乘

乘—乘方

通过观察,同学们发现:

? 等差数列中的 减法、加法、乘法,

等比数列中升级为 除法、乘法、乘方.

四、探究活动。

探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。

练习1 在等差数列{an}中,a2= -2,d=2,求a4=_____..(用一个公式计算) 解:a4= a2+(n-2)d=-2+(4-2)__2=2

等差数列的性质1: 在等差数列{an}中, a n=am+(n-m)d.

猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am__qn-m

性质证明 右边= am__qn-m= a1qm-1qn-m= a1qn-1=an=左边

应用 在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2__22=-8

探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。

练习2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为 . 解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180

等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq

猜想等比数列的性质2 在等比数列{an} 中,若m+n=s+t则am__an=as__at 特别的,当m=n时,an2=ap__aq

性质证明 右边=am__an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as__at=左边 证明的方向:一般来说,由繁到简

应用 在等比数列{an}若an>0,a2a4+2a3a5+a4a6=36,则a3+a5=_____. 解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36

由于an>0,a3+a5>0,a3+a5=6

探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。

高中数学教案【篇3】

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

高中数学教案【篇4】

“等差数列”教学设计

一、教学内容分析

等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

二、教学目标

1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

三、教学重难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

四、学习者分析

普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

五、教学策略选择与设计

结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计:

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

六、教学资源与工具设计

(一)学习环境:多媒体教室

(二)用到的资源:

1 查找有关等差数列的实例

2 写出上课要提到的问题

3 制作相关PPT课件

七、教学过程

教学环境 教学内容与

教师活动 学生活动 设计意图或依据 情境导入

在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?

由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?

水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?

倾听和观察分析,发表各自的意见。

课堂引入,引向课题 探索与归纳

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。

提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件?

由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b

的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,

从而可得到在一等差数列中,若m+n=p+q则

高中数学教案【篇5】

教学目标:

1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2。会求一些简单函数的反函数。

3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

教学活动

设计意图一、创设情境,引入新课

1。复习提问

①函数的概念

②y=f(x)中各变量的意义

2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3。板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1。问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2。问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3。渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1。(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

2。引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3。两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4。函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1。(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1 (2)y=x 1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2。总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x与y互换得。

3° 写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________。

(3)(x

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=—2x 3(xR) (2)y=—(xR,且x)

( 3 ) y=(xR,且x)

2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题2。4 第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学教案【篇6】

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1.会用坐标表示平面向量的加法、减法与数乘运算.

2.理解用坐标表示的平面向量共线的条件.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

三、教学过程

(一) 知识梳理:

1.向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

(2)设A(x1,y1),B(x2,y2),则

=_________________

| |=_______________

(二)平面向量坐标运算

1.向量加法、减法、数乘向量

设 =(x1,y1), =(x2,y2),则

+ = - = λ = .

2.向量平行的坐标表示

设 =(x1,y1), =(x2,y2),则 ∥ ⇔________________.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;

(2)求满足 =m +n 的实数m,n;

练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),则m-n的值为.

考点2平面向量共线的坐标表示

例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求实数k的值;

练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ()

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1.向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

2.两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则 的值为; 的值为.

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

练:(2014,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于()

【思考】两非零向量 ⊥ 的充要条件: · =0⇔.

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

(3)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的值为()

A.6 B.7 C.8 D.9

练:(2016,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

五、课后作业(课后习题1、2题)

高中数学教案【篇7】

高中数学教案参考1

如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

第一,用多变的课堂教学,充分调动学生的主动性

我认为数学教学是教师思维与学生思维相互沟通的过程。从信息论的角度看,这种沟通就是指数学信息的理解、加工、传递的动态过程,在这个过程中充满了师生之间的数学交流和信息的转换,离开了学生的参与,整个过程就难以畅通。北京师范大学曹才翰教授指出“数学学习是再创造再发现的过程,务必要主体的用心参与才能实现这个过程”;从当前全面实施素质教育的要求来看,激发学生用心参与课堂教学,就是为了提高课堂教学效率,培养学生的学习潜力和创造思维潜力,这与以培养创造型人才为目的的素质教育完全一致,因此,在数学课堂教学中提高学生的参与度,不仅仅具有提高数学教学质量的近期作用,而且具有提高学生素质的远期功效。

若要实现这个目标,在教学引入时我常常以问题作为出发点,选取的素材密切联系学生的现实生活,运用学生的求知欲,使学生感到数学就在他们身边,与现实世界联系紧密,同时问题情景的设置又具有必须的挑战性,引发了学生的思考。

如人教版初二几何《三角形》的《关于三角形的一些概念》在引入时我提出了以下几个问题:你能举出生活中一些有关三角形的实例吗?你能一笔画一个三角形吗?你能用语言叙述你的画图过程吗?

如人教版初二几何《三角形》的《三角形全等的判定(一)》在引入时我提出了这样一个问题:请你任意画一个三角形,你能否再画一个与其全等的三角形。画好后请你剪下来验证一下。学生的用心性被激发,热烈的讨论,课堂上出现了许多状况

有的学生用的是先确定一角再确定两边的画法;有的一个学生是利用尺规根据三边关系画的(这正是后面所要学的一个三角形全等的判定公理);有的学生是利用了垂直、平行、对顶角来省去作图中使用量角器的麻烦,学生充分利用已有的数学知识,利用自己对数学图形的感知,很好的解决了这个问题,透过剪一剪试一试从直观上验证了自己的画法。

如《相似形》的《相似三角形的性质》在引入时我提出了这样的问题:提到与我国并称为世界四大礼貌古国的埃及你会想到什么?学生们说到了法老、金字塔、木乃伊等等,说到金字塔你能测量出埃及大金字塔的高度吗?学生几乎是异口同声地告诉我用影长,当时我称赞他们与我们的几何学之父古希腊人欧几里得的测量方法一样,并讲述了欧几里得的故事,他等到自己在阳光下的影长与他的身高正好相等的时候,测量了金字塔的塔影的长度,这时,他宣布,“这就是大金字塔的高度。”从而激发了学生探索相似三角形的其它性质的兴趣。

我在课堂教学的过程中,为了使成绩较差同学减少对于数学的恐惧感,课堂上放慢教学速度,变换教学方法,如人教版初二几何《三角形》的《关于三角形的一些概念》我是这样处理的:1、请学生讲解三角形的有关概念;2、请学生用折纸的方法讲解角平分线和中线,折纸的过程中你还发现了什么?3、请学生任意作一个三角形,并做出这个三角形的一条角平分线和一条中线。三个要求层层深入了学生对于基本概念的理解,变教师讲为学生讲,取得了较好的效果。

我在课堂上放慢教学速度是能够照顾到大部分学生的,但一小批优等生就会出现没事做的状况,这时学习小组就是他们发挥余热的地方,在具体的教学过程中给学生建立了数学学习小组,让学生在各自的小组中相互帮忙,让每一个学生都能从事小组中不同的工作,并最终完成一个共同的目标。透过小组学习,使学生树立正确的团队观,尊重他人、尊重自己,敢于发表自己的观点,又不固执己见,对同学的见解,既要乐于理解合理成分,又要勇于表达自己不同的看法。在具体实施的过程中,我越发的认识到讨论的重要性,我鼓励学生质疑,质疑教师,质疑教科书,鼓励学生争论,有些知识点在学生的争论中被突破,知识在争论中被融会贯通,我发现学生之间的语言他们更容易理解,于是我开始尝试让学生讲课,讲过三角形的分类等。又如学习基本作图时,教科书就如一本说明书,让学生以学习小组为单位,阅读、画图,互教互学,实际教学时取得了很好的效果。让各层次的学生都能有所知,有所得。在认知效果和记忆效果方面比教师直接给出要好。

第二,布置多样的作业,引导学生的用心性

让学生作业的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。正确组织好学生作业,对于培养学生的独立学习的潜力和习惯,发展学生的智力和创造潜力有着重大好处。因此,教师应重视作业的布置,《数学课程标准》中明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”作业布置如何体现这一基本理念,如何调整作业在学生学习活动中的位置,也是提高课堂教学效率的关键。

课堂结束新课后,我透过作业的布置渗透数学学习方法如自学,这样才能真正提高学生数学学习的水平,开始时每一天的第一样作业是复习,最后一项作业是预习,而且把具体的页数写清楚提出具体的预习提纲,加强学生看书的针对性,开始时还带有必须的强制性如让家长签字,从而提高学生阅读理解的潜力。

对数学的兴趣能激发学生的学习动机,富有情境的作业具有必须吸引力,能使学生充分发挥自己的智力水平去完成。趣味性要体现出题型多样,方式新颖,资料有创造性,如课本习题、自编习题、计算类题目、表述类题目(如单元小结、学习体会、数学故事、小论文等)互相穿插,让学生感受到作业资料和形式的丰富多采,使之情绪高昂,乐于思考,从而感受作业的乐趣。

根据上课资料所需经常让学生动手做教具如剪钝角三角形、锐角三角形、直角三角形,做教具说明三角形具有稳定性而四边形没有此特性等,这种做法不但能够提高学生学习的兴趣,而且会有一些意想不到的事情。如:学生做教具说明三角形具有稳定性而四边形没有此特性时,有的学生用线绳打结连接四边,有的学生为了省事用订书钉订的,而订的不同方法得到有的四边形能动而有的不能,经过学生的讨论得出关键在于连接处是一个点还是两个点的问题,学生很受启发。

高中数学教案参考2

上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一学期,我对教学工作有了如下感想:

一、认真备课,做到既备学生又备教材与备教法。

上学期我根据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思考到,认真写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮忙学生进行归纳总结。

二、增强上课技能,提高教学质量。

增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。因为应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得简单,学得愉快。注意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思考每一个层次的学生学习需求和理解潜力,让各个层次的学生都得到提高。

三、虚心向其他老师学习,在教学上做到有疑必问。

在每个章节的学习上都用心征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的意见,改善教学工作。

四、认真批改作业、布置作业有针对性,有层次性。

作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到的效果。同时对学生的作业批改及时、认真,并分析学生的作业状况,将他们在作业过程出现的问题及时评讲,并针对反映出的状况及时改善自己的教学方法,做到有的放矢。

然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,用心向老老师学习以提高自己的教学水平。

以上几点便是我的一点心得,期望能发扬优点,克服不足,总结经验教训,为今后的教育教学工作积累经验,以便尽快地提高自己的水平。

高中数学教案参考3

一、教材分析

1.教材所处的地位和作用

在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。

2.教学的重点和难点

重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。

难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。

二、教学目标分析

1、知识与技能:

(1)了解随机数的概念;

(2)利用计算机产生随机数,并能直接统计出频数与频率。

2、过程与方法:

(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;

(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯

3、情感态度与价值观:

通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.

三、教学方法与手段分析

1、教学方法:本节课我主要采用启发探究式的教学模式。

2、教学手段:利用多媒体技术优化课堂教学

四、教学过程分析

㈠创设情境、引入新课

情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?

预设学生回答:

⑴采用简单随机抽样方法(抽签法)

⑵采用简单随机抽样方法(随机数表法)

教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题)

「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。

情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?

「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。

㈡操作实践、了解新知

教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。

「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。

问题1:抛一枚质地均匀的硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?

思考:随着模拟次数的不同,结果是否有区别,为什么?

「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。

问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?

(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?

「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。

问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?

(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?

「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;

⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。

㈢讲练结合、巩固新知

问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?

问1:能用古典概型的计算公式求解吗?

你能说明一下这为什么不是古典概型吗?

问2:你如何模拟每一天下雨的概率为40?

「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。

⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。

归纳步骤:第一步,设计概率模型;

第二步,进行模拟试验;

方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;

方法二:(随机模拟方法--计算机模拟)

第三步,统计试验的结果。

课堂检测将一枚质地均匀的硬币连掷三次,出现“2个正面朝上、1个反面朝上”和“1个正面朝上、2个反面朝上”的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。

「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。

㈣归纳小结

(1)你能归纳利用随机模拟方法估计概率的步骤吗?

(2)你能体会到随机模拟的优势吗?请举例说说。

「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。

㈤布置练习:

课本练习3、4

「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

[内容结束]

高中数学教案参考

高中数学教案【篇8】

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

高中数学教案【篇9】

二次函数

一、考纲要求

二、

一、复习回顾

1、讲解上节课所留作业中典型试题的解题方法,重新记录,加深印

象 2回答上节课所讲相关知识点,找出遗漏部分

二、课堂表现

1、课堂笔记及教师补充知识点的记录

2、重点知识点对应典型试题训练,并且通过训练归纳总结常考题型的解题思路和方法

三、归纳总结

四、复习总结高考趋势

由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导数是二次函数,因此二次函数在高中数学中应用十分广泛,一直是高考的热点,特别是借助二次函数模型考查考生的代数推理问题是高考的热点和难点,另外二次函数的应用问题也是2010年高考的热点。

三、知识回顾

1、二次函数的解析式

(1) 一般式:

(2) 顶点式:

(3) 双根式:求二次函数解析式的方法:1已知时,○宜用一般式 2已知时,○常使用顶点式 3已知时,○用双根式更方便

2、二次函数的图像和性质

二次函数fxax2bxc(a0)的图像是一条抛物线,对称轴的方

程为顶点坐标是()。

(1)当a0时,抛物线的开口,函数在上递减,在上递增,当x

(2)当a0时,抛物线的开口,函数在上递减,在上递增,当x

(3)二次函数fxax2bxc(a0)

当时,恒有 fx.0 , 当时,恒有 fx.0 。

(4)二次函数fxax2bxc(a0),当b24ac0时,图像与x轴有两个交点,M1(x1,0),M2(x2,0),M1M2x1x2.ab时,函数有最值2ab时,函数有最为 2a

四、基础训练

1、已知二次函数fxax2bxc(a0)的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值为,最大值为 2函数fx2x2mx3,当x(,1]时,是减函数,则实数m的取值范围是。

3函数fxx22axa的定义域为R,则实数a的取值范围是

4已知不等式x2bxc0 的解集为(),则bc5若函数f(x)=(x+a)(bx+2a) (常数a、b∈R) 是偶函数,且他的值域为(-∞,4],则f(x)=112

36 设二次函数y=f(x)的最大值为13,且f(3)= f(-1)=5,则7已知二次函数f(x)x24ax2a6(xR)的值域为[0,),则实数a

五、例题精讲

例1 求下列二次函数的解析式

(1) 图像顶点的坐标为(2,-1),与y轴交点坐标为(0,11);

(2) 已知函数f(x)满足f(0)=1,且f(x+1)-f(x)=2x;

(3) f (2)=0,f(-1)=0且过点(0,4)求f(x).例2 已知函数f(x)ax2(b8)xaab,当x(3,2)时,f(x)0,当

(1)求f(x)在[0,1]内的值域。x(,3)(2,)时,f(x)0。

(2)若ax2bxc0的解集为R,求实数c的取值范围。

例3 已知函数f(x)ax2bx(a0)满足条件f(x5)f(x3)且方程f(x)x有等根,(1)求f(x)的解析式;(2)是否存在实数m,n(mn),使f(x)的定义域和值域分别是[m,n]和[3m,3n]?如果存在,求出m,n的值;若不存在说明理由。

例4已知关于x的方程mx2+(m-3)x+1=0①若存在正根,求实数m的取值范围②2个正根m的取值范围③一正一负根m的取值范围④2个负根的m的取值范围

六、巩固练习

1.若关于x的不等式x2-4x≥m对任意 x∈(0,1]恒成立,则 m的取值范围为

2.不等式ax2+bx+c>0 的解集为(x1,x2)(x1 x2\n

cx2bxa0的解集为3 函数y2cos2xsinx的值域为 4 已知函数f(x)xf(x)x有唯一(a,b为常数且ab0)且f(2)1,axb

解,则yf(x)的解析式为

5.已知a,b为常数,若f(x)x24x3,f(axb)x210x24,则5ab6.函数f(x)4x2mx5在区间[2,)上是增函数,则f(1)的取值范围是

7.函数f(x)=2x2-mx+3, 当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,

8.若二次函数f(x)ax2bxc满足f(x1)f(x2)(x1x2)则f(x1x2)9.若关于x的方程ax22x10至少有一个负根,则a的值为

10.已知关于x的二次方程x2+2mx+2m+1=0

(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,

2)内,求m的范围。(2)若方程两根均在(0,1)内,求m的范围。

11.若函数f(x)=x2+(m-2)x+5的两个相异零点都大于0,则m的取值范围是

12.设f(x)=lg(ax2-2x+a)

(1)若f(x)的定义域为R,求实数a的取值范围;

(2)若f(x)的值域为R,求实数a的取值范围。

高中数学教案【篇10】

一、本节课内容的数学本质

本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。

所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。

二、本节课内容的地位、作用

“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。

三、学生情况分析

学生已初步理解了函数图象与方程的根之间的`关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。

四、教学目标定位

根据教材内容和学生的实际情况,本节课的教学目标设定如下:

通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。

借助计算器用二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备。

通过探究、展示、交流,养成良好的学习品质,增强合作意识。

通过具体问题体会逼近过程,感受精确与近似的相对统一。

五、教学诊断分析

“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。

六、教学方法和特点

本节课采用的是问题驱动、启发探究的教学方法。

通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。

本节课特点主要有以下几方面:

1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。

2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。

以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。

3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。

本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。

4、恰当地利用现代信息技术,帮助学生揭示数学本质。

本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。整个课件都以PowerPoint为制作平台,演示Excel

程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。

七、预期效果分析

以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。

另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。

关于高中必修一数学教案

一、教材分析

“解三角形”既是高中数学的.基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理。

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

高中必修一数学教案怎么做

一、教材分析

1.教学内容

本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

2.教材的地位和作用

函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

3.教材的重点﹑难点﹑关键

教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念.

教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.

4.学情分析

高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.

二、目标分析

(一)知识目标:

1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知__。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。

(二)过程与方法

培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。

三、教法与学法

1.教学方法

在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。

2.学习方法

自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。

四、过程分析

本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。

(一)问题情景:

为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知__,为学习函数的单调性做好铺垫。(祥见课件)

新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)函数单调性的定义引入

1.几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:

问题1、观察下列函数图象,从左向右看图象的变化趋势?

问题2:你能明确说出“图象呈上升趋势”的意思吗?

通过学生的交流、探讨、总结,得到单调性的“通俗定义”:

从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?

通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。

设计意图:通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。

(三)增函数、减函数的定义

在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。

定义中的“当x1x2时,都有f(x1)

注意:(1)函数的单调性也叫函数的增减性;

(2)注意区间上所取两点x1,x2的任意性;

(3)函数的单调性是对某个区间而言的,它是一个局部概念。

让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。

设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。

(四)例题分析

在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。

2.例2.证明函数在区间(-∞,+∞)上是减函数。

在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。

变式一:函数f(x)=-3x+b在R上是减函数吗?为什么?

变式二:函数f(x)=kx+b(k

变式三:函数f(x)=kx+b(k

错误:实质上并没有证明,而是使用了所要证明的结论

例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。

(五)巩固与探究

1.教材p36练习2,3

2.探究:二次函数的单调性有什么规律?

(几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。

设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。

通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。

(六)回顾总结

通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。

设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。

(七)课外作业

1.教材p43习题1.3A组1(单调区间),2(证明单调性);

2.判断并证明函数在上的单调性。

3.数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。

设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。

(七)板书设计(见ppt)

五、评价分析

有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:第一.教要按照学的法子来教;第二在学生已有知识结构和新概念间寻找“最近发展区”;第三.强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,__引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。

高中数学教案【篇11】

理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

1. 提高学生的推理能力;

终边相同角的集合的表示;区间角的集合的书写.

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +

k·360° ,

k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

④终边相同的角的表示法.

②教材P5练习第1-5题;

③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

? k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈Z) .

<n·360°+135°(n∈Z) ,

当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

<n·360°+315°(n∈Z) ,

当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,

理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

一、复习角度制:

初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值|α|= .

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把? rad化成度.

(2)tan1.5.

②教材P9练习第1、2、3、6题;

③教材P10面7、8题及B2、3题.

高中数学教案【篇12】

高中数学教案

精选高中数学教资面试教案两篇

第一篇《函数的单调性》

1.题目:函数的单调性

2.内容:

3.基本要求

(1)试讲时间约10分钟;

(2)创设问题进行导入,建立与已学知识之间的联系;

(3)采用恰当的教学方法,让学生直观感受数形结合思想。

4.考核目标:教学设计,教学方法,教学实施。

课时:

1课时

课型:

新授课

教学目标:

1、知识与技能:从形与数两方面理解单调性的概念,初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。

2、过程与方法:通过对函数单调性定义的探究,提高观察、归纳、抽象的能 力和语言表达能力;通过对函数单调性的证明,提高推理论证能力,体验数形结合思想方法。

3、情感态度价值观:通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。

教学重点:

函数单调性的概念形成和初步运用。

教学难点:

函数单调性的概念形成。

教学过程:

(一)创设情境,导入新课

教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。 然后提出两个问题:问题一:二次函数是增函数还是减函数?问题二:能否用自己的理解说说什么是增函数,什么是减函数?

学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-∞,0]上y随x增大而减小,在(0,+∞)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。

设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。

(二)初步探索,形成概念

教师活动:(以y=x2+1在 (0,+∞)上单调性为例)让学生理解如何用精确的数

学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。

1 / 4

高中数学教案

学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。

设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。

(三)概念深化,延伸扩展

教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数?从这个例子能得到什么结论?并给出例子进行说明:

进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数,最后再一次回归定义,强调任意性。

学生活动:思考、讨论,提出自己观点,并提出反例,如x1=-1,x2=1,进而得出结论:函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数将函数图象进行变形(如x

设计意图:通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。

(四)证明探究,应用定义

教师活动:展示例题

例1:证明函数在(0,+)上是增函数

证明:任取且

∴函数在(0,+)上是增函数。

进一步提问:如果把(0,+∞)条件去掉,如何解这道题?要求学生课后思考。

学生活动:根据单调性定义进行证明、讨论,规范出证明步骤:设元、作差、变形、断号、定论,理解根据定义进行判断,体会判断可转化成证明并完成课后思 考题。

设计意图:本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。

(五)小结评价,作业创新

教师活动:从知识、方法两个方面引导学生进行总结,留出如下的课后作业(1、2、4必做,3选做):

1、证明:函数在区间[0,+∞)上是增函数。

2、课上思考题

3、求函数的单调区间

4、思考P46 探索与研究

学生活动:回顾函数单调性定义的探究过程、证明、判断函数单调性的方法步骤和数学思想方法,完成课后作业。

设计意图:使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义,并且作业实现分层,满足学生需求。

六、板书设计

第二篇《函数的奇偶性》

1.题目:函数的奇偶性

2.内容:

2 / 4

高中数学教案

3.基本要求:

(1)试讲时间约10分钟;

(2)通过问题设计,联系学生已有知识经验探索新知识;

(3)设计一些基础性例题,以帮助学生理解函数奇偶性的主要特征。

4.考核目标:问题设计,知识归纳,教学实施。

教学设计

课时:

1课时

课型:

新授课

教学目标:

1、知识与技能目标:理解函数的奇偶性及其几何意义。

2、过程与方法目标:经历从图形直观感知到代数抽象概括,从特殊到一般的概念形成过程,培养学生观察、抽象的能力。

3、情感、态度与价值观目标:通过自主探索,体会数形结合的思想,感受数学的对称美。

教学重点:

理解函数的奇偶性及其几何意义。

教学难点:

判断函数奇偶性的方法。

教学准备:多媒体

教学过程:

一、图片展示,引入新课

多媒体展示喜字、蝴蝶、扑克牌、交通标志四幅图片,请学生观察这些图片具有什么样的共同特征。

通过观察,老师适当引导,学生能够发现前两幅图是轴对称的,后两幅图是中心对称的。

继续追问数学中这样的对称,请学生举例说明。由于前几节课都在学习函数,会有部分学生想到有些函数的图像是对称的。

引入课题:今天我们一起来研究图像具有对称特征的函数的性质——奇偶性

二、合作探索,学习新知

1.观察下列函数的图像:说明图像有什么样的特点。

思考1:这两个函数的图像有何共同特征?

思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?

一般地,若函数y=f(x)的图象关于y轴对称,当自变量x任取定义域中的一对相反数时,对应的函数值相等。即f(-x)=f(x) 思考3:怎样定义偶函数?

学生先进行独立思考,然后小组讨论形成小组结论,最后展示本组讨论结果。

师生互动将学生得到的定义进行补充完善最终得到精确的偶函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)

2.观察下面两个函数的图像,回答以下问题。

问题1:观察图像,从对称的角度思考,它们有什么共同特征?

问题2:分别求当自变量x=±1, ±2时的函数值,从中你能发现什么规律?

问题3:是否对于定义域内所有的x,都有类似的情况?

问题4:类比偶函数的定义给出奇函数的定义。

3 / 4

高中数学教案

学生先进行独立思考后,小组内进行交流,形成小组最后结论,最终展示本组成果。

小组代表展示结果后,师生互动得出奇函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)

3.强化定义,深化内涵

对奇函数、偶函数定义的说明:

(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x),具有奇偶性。

(2)函数具有奇偶性的前提是:定义域关于原点对称。

(3)若f(x)为奇函数,则f(-x)=-f(x)成立;若f(x)为偶函数,则f(-x)=f(x)成立。

三、讲练结合,巩固提升

例1.利用定义判断下列函数的奇偶性

小结:用定义判断函数奇偶性的步骤: :

(1)先求定义域,看是否关于原点对称;

(2)再判断f(-x)与f(x)的关系;

(3)若f(-x)=f(x)则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数。

例题2:利用定义判断下列函数的奇偶性

四、总结升华

师生一起回顾函数奇偶性的定义,图像性质,已经如何判断一个函数的奇偶性。

五、布置作业

1.教材42页习题

2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,求x板书设计:

函数的奇偶性

偶函数:

奇函数:

判断函数奇偶性步骤: 一看

二找

三判断

4 / 4

幼儿园数学教案推荐


深入挖掘“幼儿园数学教案”所涵盖的课程内容,能够让我们学习到更多有趣的知识。教案课件是老师备课的重要步骤,现在开始制定教案课件也不晚。对于初入职场的教师来说,教案的制定尤其重要。本文提供参考资料,并请您收藏!

幼儿园数学教案【篇1】

活动生成

每当孩子们散步经过花圃时,看见各种花儿争奇斗艳,他们都情不自禁地叫道:老师,红颜色的花,黄颜色的花,真多啊!1朵、2朵、3朵

小班幼儿对数学活动的兴趣还不浓,因此我抓住幼儿的这一兴趣点,用活泼生动的情景教学法,让幼儿在有趣、形象的游万花园的情景中学习按颜色分类、配对,激发幼儿对数学的学习兴趣。

活动目标

1.发展幼儿对花朵色彩、数量的感知。

2.幼儿能尝试简单的分类。

3.体验快乐的情绪。

活动准备

红、黄、绿纸花若干;红、黄、绿圆点即时贴若干;平衡木、做小河的彩布条;音乐磁带《郊游》;纸杯制成花状,花心分别为红、黄、绿。

活动过程

一、创设情境

师:今天我们要去万花园玩玩。瞧,我们必须先过小桥,再跨过小河,才能进入万花园。让我们一起出发吧!幼儿随着《郊游》的音乐出发去万花园。

(这个环节增强了活动的情景性,激发了幼儿的活动兴趣。)

二、捡花

1.走进万花园

师:地上这么多漂亮的花朵,我们快来捡花朵吧!

幼儿分散捡花朵,老师参与幼儿活动。

(美丽的花朵激发了孩子们的兴趣,活动气氛很活跃。)

2.感知1和许多

师:瞧,我也捡了几朵花。你们来帮我数一数吧!

幼儿数不清,能力强的幼儿就说:老师捡了许多花。让幼儿比较1和许多。

3.请幼儿把花朵贴在自己的衣服上

(让幼儿贴花朵,一是练习发展幼儿的小肌肉群,二是为在下面活动中幼儿能更清楚地看到自己和别人花朵的数量奠定基础。)

师:瞧,你们都变成花宝宝啦!

老师提问幼儿:你开了几朵花?有哪些颜色的花?

(巩固幼儿对数量和颜色的认识。如果有超过4个以上的,可以让幼儿用许多来表示。)

三、送花儿回家

1.师:现在花朵该回家啦,我们把她们送回去吧!看,那里有什么颜色的篮子?红花应该送到什么颜色的篮子里?绿花应该送到什么颜色的篮子里

2.幼儿把花朵送到相应颜色的篮子里。如果老师发现有送错的花朵,请幼儿自己纠正。

(幼儿第一次尝试按颜色分类。个别幼儿有分错的现象,老师加以引导。)

四、找朋友

1.引导幼儿按照纸杯花心颜色去粘贴相同颜色的花瓣。

师:瞧,那里还有些白色的纸杯花,他们的花心有的是红色的,有的是绿色的,有的是黄色的,请小朋友们根据花心的颜色去粘贴和它相应的花瓣。

引导幼儿可以用红、黄、绿圆点做花瓣,并强调一片花瓣贴一个圆点。

幼儿每人拿一只纸杯花,找相应的圆点来装饰。

(让幼儿用粘贴的方法,渗透一一对应的概念,这是活动的重点部分,并让幼儿第二次进行颜色配对练习。)

五、回家,活动结束

师:今天我们来到万花园,做了好多事情,你们真能干!现在让我们带着小花回家吧!

播放音乐《郊游》,原路返回。

(结束部分自然、轻松,有情景性,幼儿玩得开心。)

活动评析

《纲要》中指出:能从生活和游戏中感受事物的数量关系,体验数学的重要和乐趣。在这一精神的指导下,执教者构思了本次教学活动。以幼儿喜欢的花朵为教学具,将一系列的游戏贯穿于整个活动过程中,让幼儿在玩中学。

本次活动的几个比较成功之处:

1.活动内容贴近幼儿生活。各种美丽的花朵对幼儿而言具有极强的吸引力,从而激发幼儿的参与兴趣和学习的积极性。

2.活动重在培养幼儿对数学活动的兴趣,让幼儿在感知花朵色彩、数量的基础上,在探索、解决问题的过程中体验数学的乐趣。

3.活动过程由浅入深,层层递进,既符合幼儿当前水平,又具有一定的挑战性,一环扣一环,循序渐进,有利于幼儿调动原有经验,探索和学习新的事物。

4.活动材料均是幼儿生活中可以接触到的,做到了既保证幼儿对材料产生兴趣,又不花哨,从而有利于幼儿专注地学习。

5.整个活动体现了以幼儿为主体、教师为主导的和谐的师生关系,达到趣味性、科学性、愉悦性的和谐统一。

幼儿园数学教案【篇2】

教学目标

1、让幼儿正确感知此6少的数量,理解数的意义。

2、引导幼儿积极地与材料互动,培养良好的操作习惯。

3、让幼儿体验数学活动的乐趣。

教学准备

1、空塑料瓶若干,黄豆若干,1-7不同数量的实物纸条

2、1-6的数字卡、1-6的加点卡、动物图卡

教学过程

一、以开火车游戏激发幼儿活动的兴趣。

1、老师拿点子、数卡、动物图卡和孩子们进行问答游戏。

师:嘿嘿,我的火车几点开?(师随机出示6以内的点卡、数卡)

幼:嘿嘿,我的火车几点开。

师:嘿嘿,来了几位小客人?(出示动物卡片)

幼:嘿嘿,来了几位小客人。(反复进行几次)

二、通过看看说说理解数字

1、教师:“6”来迎接我们了,6可以表示什么?(幼儿先讲述,再示大瓶子)

2、6还可以表示这个动物瓶上的6只小白兔。

6只小白兔可以用几个圆点来表示?请幼儿上前选一张。

三、制作动物瓶,感知比6少的数量。(乐幼教)

1、先让幼儿找出比6少的动物图卡片贴在瓶身上,再组织幼儿集中交流,将探索的结果用圆点表示出来。

2、师幼总结:此6个圆点少的有5个、4个、3个、2个、1个。

3、再次操作,鼓励幼儿小组交流,介绍自己每个瓶身上贴了几个小动物?请小朋友检查是

4、师:嘿嘿,我的火车几点开?(教师随机出示6以内的点卡、数卡)

幼:嘿嘿,我的火车几点开。

师:嘿嘿,来了几位小客人?(出示动物卡片)

5、动物瓶上的数量可以用数字几来表示?

请小朋友到数字城找一找贴在6的下边。

四、将数字、实物、图卡对应匹配

1、请小朋友帮豆宝宝搬家,要仔细看好动物瓶上有几只小动物就往瓶里放几个豆宝宝,不能多也不能少,天冷了,赶快给它关好门,并在瓶盖上贴上相应的数字。

2、幼儿操作后,集体检查个别幼儿。

五、游戏:数字宝宝找朋友

1、每个小朋友拿一个自己喜欢的数字挂在头上,记住自己的数字是几,由数字6开始按比自己小1的顺序找朋友,找到的新朋友排在前面,按6、5、4、3、2、1的顺序组成几列长长的小车箱。

2、教师:呜-我的火车要开了,小小车箱快快来。音乐响起,师幼开火车走出活动室,结束本次活动。

幼儿园数学教案【篇3】

教学目标:

1、在排列数列的游戏中,深入理解序数和熟练掌握求数列中未知数的方法。(重、难点)

2、培养幼儿运用数学解决问题的能力。

3、在游戏中培养幼儿探究数列的欲望。

4、让幼儿懂得简单的数学道理。

5、让幼儿学习简单的数学题目。

教学准备:

经验准备:

幼儿已对序数、正数和倒数有了一定的认识

学具准备:

各种盒子、10种不同动物卡片、10种不同形状图形卡片、操作卡、作业单、笔、ppt

教学过程:

一、确定活动目标

师:今天,我们请来了小动物们为我们来进行队列表演,(10名小动物听音乐排队出场,站一排,先从左到右报数,再从右到左报数。)请一只小动物出列,他从左往右正着数排第几?从右往左倒着数排第几?他们在数学里就叫做序数。今天我们要玩什么游戏?

师:今天我们要玩在数列里找序数的游戏,接下来我们就和小动物们一起去神秘的宝石森林探险,找更多的序数。

二、探究新知

1、知道一列小动物的总数和其中一个动物的正数顺序,求倒数顺序。

现在小动物们来到了宝石森林外,突然一只狐狸挡在他们的面前,我们听一听狐狸说了什么?

指令:知道小动物的总数和其中一个动物的正数排第几,求它倒数排第几。

要求:认真阅读作业单上的内容,按内容要求进行边操作边记录。

个体探究

学情分析:

1、阅读作业单时总数和正数顺序会出错。

2、倒数顺序错误。

3、总数、整数的顺序正确,找到的答案也正确。

群体讨论:

讨论重点:在已知条件下,求倒数。

讨论策略:

针对学情1、2:请其他幼儿进行补充。

针对学情3:教师给予肯定,并请全体幼儿找出正确的.方法。

小结:在数列中找序数时,第一、要先知道总数是几,就放几只小动物。第二、知道正数排第几,从左往右找到正数的位置在哪,然后用笔标上标记。第三、我们要求倒数排第几,那我们就要从右往左数,找到做标记的小动物排在第几位

教学反思:

在执教的过程中缺少激情,数学本身就是枯燥的,那在教孩子新知识的时候,就需要老师以自己的激情带动孩子的学习,在今后的教学中这方面也要注意。

幼儿园数学教案【篇4】

【设计意图】

本学期,大班的孩子已经开始学习数的分合和10以内数的加减了,针对孩子们形象思维占主导地位,逻辑思维几乎没有的情况,我将数学的学习融入故事、PPT动画、游戏等活动中,收到了比较好的效果。孩子们在这种学习氛围中学得轻松自如,教学目标在不知不觉中完成。我的设计思路如下,希望得到各位同行的批评指正。

【活动目标】

1.学习5的减法,理解每幅图之间的数量关系,体验“走掉”“还剩”的含义。

2.学习运用简明的语言讲述减法算式所表述的图意。

3.体验数学活动的乐趣。

4.培养幼儿对数字的认识能力。

5.让幼儿懂得简单的数学道理。

【活动准备】

1.PPT、幼儿每人一套数字列式操作卡。

2.贴有数字1~4的邮箱各一个,有一道5以内加法算式题的“信”若干。

3.每人一份列式用的图卡及笔。

【活动过程】

一、做游戏“碰球”,复习5的组成。

师:小朋友,今天老师和你们来玩一玩“碰球”的游戏。

讲解游戏规则:幼儿说出的球的数量和老师的球的数量合起来是5个。如:教师说“我的一球碰几球?”幼儿回答“你的1球碰4球”。幼儿可集体回答,也可个别练习。

二、导入课题,学习5的减法。

1.出示PPT①

师:玩了“碰球”的`游戏,我要带你们去逛公园啦,出发吧!

(1)车站里有几辆公交车?用数字宝宝几表示?开走了几辆车?用数字宝宝几表示?还剩下几辆车?

(2)教师(出示“—”):这个符号表示什么?(引导幼儿发现“减号”的含义。)

(3)教师根据幼儿回答板书:5—1=4(大家一起读读这道算式。)

(4)师:这个算式表示什么?(可引导幼儿理解算式的含义。)

(5)师:请小朋友和老师一起看图讲述算式的含义,并摆一摆算式。

2.出示PPT②:花圃里有几只蝴蝶?用数字宝宝几表示?飞走了几只蝴蝶?(2只)用数字宝宝几表示?还剩下几只蝴蝶?

3.出示PPT③:池塘里有5条鱼,游走了3条鱼,还剩下几条鱼?请你用算式来表示。

4.出示PPT④:食品店里有块面包?买走了几块?还剩下几块?请你用算式来表示。

三、游戏:送信(看式计算)

(1)出示游戏材料1—4个邮箱和许多信,让幼儿观察、思考、讨论游戏玩法规则。

(2)请幼儿以小组为单位分别打开4个信箱,按游戏规则检查“信”都送对了吗?

四、看图列式计算,进一步掌握5以内的减法。

师:小朋友们,今天老师带你们逛公园,看到了美丽的风景,品尝了美食,还学会了用减法来计算,玩了送信的游戏。现在我要来考考你们,请你们看着这几幅图来列算式,还要算出答案哦,看看谁最棒。

--幼儿操作,教师巡回指导。

--师:你是怎么列式的?这个算式表示什么?(根据幼儿的回答板书,集体验证。)

五、联系生活中的运用

1.师:小朋友们想一想在生活中有哪些可以用减法来计算的说一说好吗?

2.回家后用我们今天学的本领向爸爸妈妈提出几个数学问题好吗?

教学反思:

数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。

幼儿园数学教案【篇5】

活动目标:

1、激发幼儿学习数的组成的兴趣。

2、初步理解分解组成的含义,认识分合号:"∧""∨",初步理解部分数与整体数的关系,发现数的多种分解方法。

活动准备:

苹果二个,橘子三个,果盘二个。雪花片,冰糕棒等小型操作材料。

活动过程:

1、讲解示范:把两个苹果分到二个果盘里,提问:2可以分成几和几?再把两个果盘中的苹果放到一起,提问:1和1和起来是几?

同样方法用3个橘子演示3的分解与组成。

用数字表示算式并讲解算式:2整体数∧分解号11部分数2、自身体验:幼儿自由结合2人一组,按老师的口令进行分合练习,如老师说:2可以分成1和1,两人迅速分开,老师说:1和1合起来是2,两人便迅速拉手站在一起。

3、请幼儿自由尝试:充分利用积木、操作雪花片、小串珠,等进行组成分解练习,教师巡回指导,鼓励他们发现数的组成方式。

4、用"手势口述游戏""拍手对歌"进行巩固。

5、观察理解,完成书中的要求。

(1)请幼儿观察并说出苹果和瓢虫的分合方法。

(2)教师指导幼儿指认整体数,分合号和部分数。

(3)根据花的颜色或花形作分解组成,在空格中填写相应的数字,并读出分解式。

活动延伸:

引导幼儿在生活中练习数的组成,如在家中分水果,在幼儿园分午点等。

附材料手势口述游戏。

如:练习2的分解,在胸前拍球2下,并同步口述:"1、2",然后,两手指尖相对,腕部分开,做出分解号∧"的样子,口述:"分"表示分解,再分别在左右肩上方各手手一下,并同步口述:"1""1"。

2的组成,方法同2的分解。两手腕部相对,指尖分开,做出∨的样子,表示合起来。

拍手对歌师:小朋友,我问你,2可以分成几和几?

幼儿:某老师,我告诉你,2可以分成1和1

幼儿园数学教案【篇6】

有益的学习经验:

熟练地点数4以内各数,能不受物体的颜色、大小、形状等影响,在众多物体中辨认出数量为1、2、3、4的物体。

准备:

1、贴绒图片:1条腿、2条腿、3条腿、4条腿的板凳各一条,14的点卡一套,14的点卡头饰30个。

2、每个幼儿14的点卡一套,数量分别为14的实物卡片一套。

3、地上画30个小圆圈,小圆圈分别画1、2、3、4个圆点,不同点数的圈交错排列,相同点数的圈之间相距约25厘米。

活动与指导:

1、在贴绒板上摆出1、2、3、4条腿的板凳卡各一条,问幼儿:这是什么?它们有什么区别?任意指着一条板凳,要求幼儿迅速点数,并说出板凳腿的数量或举起相应的点卡。

指导幼儿比较分析:哪条板凳的腿最多?哪条板凳的腿最少?

2、在贴绒板上摆出14的任意一张点卡,让幼儿点数点卡,说出它是几。然后在桌子上摆出相应数量的实物图片。

3、游戏:跳圆圈。

4个幼儿分别点数自己头饰上的圆圈,说出自己头饰上的圆点有几个,然后戴上头饰,站在起跑线上,老师说:开始时,每个幼儿沿着与自己头饰上的圆点数相同的圆圈一个接着一个双脚跳,谁先跳完,谁就为赢者,全体幼儿跳完后,交换头饰,再玩一次。

幼儿园数学教案【篇7】

活动目标:

1、让幼儿初步的理解两数之间的多大小。

2、更进一步得理解数数。

注意:在数物时的手不要遮住图案,最好是用小木棍,或时有一定长度的东西来带领幼儿按物数数。

活动准备:

1、一张图,上有20个苹果、15个梨、10个香蕉,按每排5个用排列法排列

2、卡纸做的奖品彩色小苹果、香蕉、梨图案小勋章数个。

教:那么多,哦那天水果王国给我送来了几个勋章图案,他们说你们好聪明,是个肯动脑筋的小朋友也很乖,所以想把它送给你们(拿出水果勋章)你们看好看吗?

幼;恩有苹果.....

教:对了,我们来看看他们有多少个,我们一起来数好吗?

教;哦,苹果有20个,小朋友苹果有多少个呀?谁来回答。举手回答,不举手我不让回答,如果不举手,你也说我也说,那水果图案小勋章给谁呢?所以回答问题要把手举好老师叫了才回答。要不然水果家族的朋友不喜欢你们了,不给你们图案小勋章了哟(好,XX你来吧)

教:恩对了,来,你回答的很好,给你一个苹果图案小勋章。(一样的依次的和幼儿再数一数香蕉和梨各多少)

教:数出了香蕉15个梨10个,香蕉和苹果谁多一点呀?

幼儿:苹果比香蕉多一点。(教师在黑板上写上苹果多一点,再在苹果和香蕉的下面对应的写上个数的数字)

教师:对了,那苹果20个,香蕉15个,那么20个苹果比15个香蕉多,也就是20比15多、是20比15大,小朋友们跟着我说:20比15多,20比15大,20个苹果比15个香蕉多。(再依次说苹果和梨、香蕉和梨的大小关系)

结束语:小朋友你们回家后再数一数别的玩具呀,杯子呀等等再比比谁比谁多,谁的数量大)

幼儿园数学教案【篇8】

活动目的

1.通过操作彩色串珠,进一步了解10以内数的分解组成;

2.通过实物操作,能进行10以内数的简单加减运算。

活动准备

1.教具准备:彩色串珠;10以内的算式卡若干。

2.学具准备:图片、作业纸、铅笔若干。

3.《数学心智开发》第6册。

活动过程

1.常规活动——问候,走蒙氏线。

线上游戏;是个小朋友。

2.集体活动。

①教师演示教具操作。如演示算式26=8,教师先取彩色串珠-2-1放在操作面上,取“”放在其右边,接着再摆彩色串珠-6-1在“”的右边,其后放“=”,然后再放彩色串珠-8-1。在彩色串珠下方用对应的数字卡片表示。

②复习10以内数的分解组成。教师请幼儿拿出格子图,让幼儿数一数,说出每排有多少格子(10格),并用数字10表示出来。让幼儿在第一排的最后一格画上斜线,引导幼儿说出10个格子,可以分成9个白格子和1个黑格子,即10可以分成9和1。让幼儿顺次每排用斜线多画一个格子,并说出10的其余几种分合式,用数字在作业单上记录下来。

③出示另4张图,要求幼儿有序地说出10的分解组成,教师引导幼儿按图片列加法算式。列加法算式:求总数,用什么方法计算?幼儿根据图片口述列出2道加法算式“18=981=9”。

④幼儿练习。引导幼儿分析,加法算式中,前两个数字交换位置,总得数不变。

⑤游戏“打麻雀”。教师出算式,幼儿心算出得数,若得数是9,便表示是9只麻雀,幼儿用手做打枪姿势,并随同发出9次“叭”的声音。

3.分组活动。

第一组:做《数学心智开发》第6册第27-28页的活动。

第二组:教师出加法算式,幼儿做算术题。

活动延伸

更换图形卡做算术题。

活动提示

在进行演算时,不一定全部以10位总数,也可由其他总数的图卡。

时间与数学教案推荐


好教师上好课必须先做好教案和课件,因此,不能草率草率了事。教案是教师为完成教育教学任务而制定的计划书。趣祝福的编辑已经准备了一份关于“时间与数学教案”的资料,希望能够对你们有所帮助。感谢您的支持,欢迎阅读本文!

时间与数学教案(篇1)

一、教学目标

(一)知识与技能

学会用“几时几分”的知识分析生活中相关联事件发生的时间。

(二)过程与方法

经历用时间的有关知识解决简单的实际问题的过程,形成初步的推理能力。

(三)情感态度和价值观

感受数学就在身边,提高学习数学的兴趣,并养成珍惜时间,合理安排时间的良好习惯。

二、目标解析

本节课是让学生通过语言描述生活中相关联事件发生的时间,再通过合情推理,推算出时间可能是多少。教材通过两个小朋友的对话,引出问题“明明可能在下面哪个时间去踢球?”,让学生在经历“合情推理──演绎推理”的过程中获取数学结论,发现数学方法。同时,教师应注重让学生对结论进行检验。

三、教学重难点

教学重点:能合理推测事件发生的时间。

教学难点:培养学生的推理能力。

四、教学准备

课件

五、教学过程

(一)创设情境,激发经验

1、谈话引入

(1)课件出示一组钟面(时间分别为6:30、7:40、9:35、11:30),先请学生读出钟面上的时间。

(2)说一说这些时间是按什么顺序排列的。

(3)这是老师周一上午的作息时间安排,你们猜一猜在这些时间里老师分别在干什么?

2、唤醒已有经验

(1)说一说你们一般会怎样安排事情的先后。

(2)学生交流后汇报。

(3)明明和他的好朋友在星期天也有自己的时间安排,今天我们将去帮他们解决一些关于时间的问题。(板书课题)

【设计意图】学生对时间的认识和理解离不开情境的支撑。由复习旧知入手,感受时间的运动方式,再结合学生感兴趣的生活情境——教师作息时间安排,引导学生说一说自己生活中对事情先后顺序的安排,唤起学生的生活经验,为学习新知做好了准备。

(二)教学互动,探索新知

1、呈现主题图,尝试解决问题

(1)课件出示例3主题图,引导学生观察图片,获取信息。

(2)学生汇报。

(3)共同分析关键词“可能”。

(4)启发学生将条件和问题完整地说一说。

(5)学生独立思考,并尝试解决问题。

【设计意图】观察是思维的前提,学生需要从主题图中获取有关的信息才能展开思考,教师应引导学生在解决问题前明确问题的方向,找到关键所在。在教学中,教师应鼓励和尊重学生的个性化的思考方法。

时间与数学教案(篇2)

教学目的:使学生比较系统地掌握常用的质量单位和时间单位,以及相邻两个单位之间的进率。

教具准备:1千克和1克的物品、小黑板等

教学过程:

一、归纳总结质量单位

1、导入课题

从上节课中我们知道,要想知道两点之间的距离,需要用长度单位来计量,要想知道物体表面的大小就需要用面积单位来计量,那么要想知道物体的轻重需要用什么单位来计量呢?(质量单位,我们习惯上也称重量单位)

板书课题:质量单位

2、复习质量单位

①、以前我们学过哪些质量单位?(吨、千克(公斤)克)

②、教师将课前准备好的物品分发给学生,让学生掂量,加深对1克和1千克的感知。

③、想一想,1千克是由多少个1克组成?

④、你们以前称过体重吗?谁能说说自己的体重是多少?

⑤、那么比千克大的单位有什么呢?教室里有1吨重的东西吗?

我们经常见到的水泥每包是50千克,10包有多重呢?20包呢?我们规定1000千克为1吨。(那么千克与吨之间的进率是1000)

⑦、让学生将进率填写在教科书p79页上。

3、做一做:教科书p79页质量单位的做一做第2题

二、归纳总结时间单位

1、导入课题

问:刚才你完成做一做的第2题大约用了多长时间?(1分、2分)

你用到了什么计量单位?(时间单位)

继续板书课题:时间单位

2、我们学过的时间单位有哪些呢?

2、教学年、日的来历和世纪

①、教师结合教具讲解年、日的来历

(同学们以前听爸爸妈妈讲过日和年的来历吗?我们生活的地球一方面它要绕着自己的轴心转动,这就是自转。另一方面它还要绕着太阳旋转,这被称为公转。地球自转一周所用的时间叫一日,地球绕太阳公转一周所用的时间叫做一年,不过由于公转一周的时间不是整天数,而是365天5小时48分46秒,因此规定1平年有365天,这样每4年大约少算1天,从而又规定每4年加1天,这年叫闰年,有366天,但是公历年份是整百年时只有400的倍数才是闰年,有兴趣的同学课后可以想想这是为什么?)

②、教师讲解世纪

3、复习时间单位表

①.1年有多少个月?(12个月);1个月有多少天?(引导学生按月叙述,2月应分平年、闰年叙述)

②.1天有多少小时?1小时等于多少分?1分等于多少秒?

③.让学生将进率填写在书上。

三、巩固练习

1、做练习十八的第5、7题

学生独立做,教师注意巡视,然后集体订正,可以让学生说说自己的想法。

2、做练习十八第8题

教师读题目要求,再说出各个年份,让学生分别说出是平年还是闰年。

四、作业

练习十八第4、6题

(第6题要告诉学生本月的1号是星期几)

板书设计31(1、3、5、7、8、10、12)

质量单位、时间单位30(4、6、9、11)

28(平年二月)

29(闰年二月)

吨1000千克1000克世纪100年12月日24时60分60秒

平年(365日)

闰年①公历年份是4的倍数的

②公历年份是整百数的,必须是400的倍数

时间与数学教案(篇3)

教材分析:

教材首先指出百分数在生产、工作和生活中有广泛的作用,接着通过两个实例引出百分数的概念。教材这里强调的是两个数量的比,并联系比的概念说明,百分数也可以看作是以100为后项的一种比,所以又叫做百分率或百分比。最后教学百分数的写法。

学情分析:

学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。

教学目标:

1.使学生了解百分数的意义,会正确读写百分数。

2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。

教学重点:百分数的意义及读、写

教学难点:分数与百分数的意义之间的联系和区别

教具准备课前查阅百分数的资料

小黑板或投影

教学过程

活动(一)复习准备

1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)(1)在12届亚运会中

各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占

23.8%。

(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。

2、谁知道这些数是什么数?你对百分数已经有了哪些了解?你还想了解什么?

师:在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。这节课就来研究。

活动(二)探究新课

1某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级三

生占全年级的几分之几?五年级三好生占全年级的几分之几?17/100、3/20分别表示两个量之间的什么关系?(倍数关系)

提问:根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

时间与数学教案(篇4)

一、教学目标:

1、让学生结合经验学会看整时和半时。

2、培养学生的观察能力。

3、使学生养成珍惜时间和遵守时间的良好习惯。

二、教学准备:

钟面、课件

三、教学过程:

(一)导入,激趣

1、电脑展示画面,你认识它吗?它能帮助我们做些什么事情?

2、你能说说家里的小闹钟像什么吗?

(二)画钟面

1、我们家里的小闹钟真可爱,今天我们自己动手也来做一个。

2、四人小组合作一起做,做好后小组内同学互相说一说,你画了些什么?

老师要求:①画好后说一说,画了些什么?

②哪个小组画好了就把钟面贴到黑板上来。

放轻松的音乐《玩具兵进行曲》

3、交流展示

选择4个钟面大家来说说,钟面上分别有些什么?

4、落实概念

时针:钟面上哪根针是时针?谁能说更准确一些?(又粗又短)

分针:哪根针是分针?(又细又长)

12个大格:数一数有几个格子?

12个数字:①你怎么记这12个数字的位置?(学生自由说)

②教师点拨,弄清位置。

请你闭上眼睛,记一记这12个数字的位置。

用手势指一指。12在哪里?6在哪里?9在哪里?你是怎么记的?

那么,7在哪里?你能很快找到吗?

(三)认识整时

1、指第一个钟面,这是几时?你能读出这是几时吗?

2、你是怎么看的?

3、小结:要看几时,我们应该怎么看?

(分针指着12,时针指着几,就是几时。)

4、(再指另一个)那这个怎么看?

分针指12,时针指着4,就是4时。

(四)巩固整时,并认识半时

1、下面我们一起去看看小明一天的时间安排吧!

①巩固认整时。看着图你想说什么?

②并抽1个说说怎样看时间?

③你认为他这样安排合理吗?

④渗透遵守时间,珍惜时间,合理安排时间的教育。

2、认识半时。

刚才小朋友们特别聪明,都知道小明一天的时间安排,时间老人他说还想请小朋友来帮一个忙,小朋友们你看:(出示一个半时的钟面)

①你看这是几时?

②这时分针,时针在哪里?

③如果2时半,分针、时针在哪里?

④8时半呢?

⑤小结:看半时它的分针都指着6,时针呢,指着几和几的中间。

时间与数学教案(篇5)

教学目标:

1、理解分数、小数相互转化的必要性。

2、能正确地将简单的分数化为有限小数。

3、能正确地将有限小数化为分数。

教学重、难点:

1、分数与小数的互化。

2、掌握分数与小数互化的方法。

教具准备:

教学情境图。

教学过程:

一、复习引入。

1、复习。

(1)用小数和分数表示下面每个图中的阴影部分。(图略)

(2)在○里填上、或=。

0.85○0.93/4○3/51/10○0.1

0.72○0.273/5○1/20.45○37/100

先让学生独立完成上面的练习,再组织全班交流。

2、引入。

师:刚才同学们利用了把分数化小数或小数化分数的办法比较了一个分数和一个小数的大小。这里所出现的分数分别是10和100(是十进分数),这节课,我将来探讨分数、小数互相转化的方法。

板书课题:看课外书时间(分数、小数的互化)。

二、探索新知。

1、呈现书第71页的例题。

2、理解题意。

师:题中告诉我们哪些条件?所求的问题是什么?

指名回答,通过交流,还要引导学生认识学习分数、小数相互转化的必要性。

3、指导估算。

先让学生估计,指名说一说估计的结果。

4、精确比较。

(1)自主探究比较方法。

师:你能精确比较0.4和1/4的大小吗?那请你动脑筋想办法来比一比,并与同桌交流一下。

学生尝试:比较0.4和1/4的大小;教师巡视,个别交流、辅导,注意发现不同的比较方法。

(2)讨论交流比较方法。

师:谁来说说你是怎样比较的?

指名汇报,学生可能会提供以下几种比较方法。(略)

5、分数与小数相互转化的讨论。

通过讨论让学生悟出分数与小数的相互转化的基本方法:

一般地说,分数化为小数是运用分数与除法的关系,即用分子去除以分母;小数转化成分数则是先把小数化为十进分数,再进行处理。

三、练一练。

1、第1题,把下列分数化成小数。请学生独立完成。

2、第2题,下列小数化成的分数是否正确?如果不对,请改正。请学生独立完成。

3、第3题,以你说我答的形式,让学生熟记一些常用的分数与小数互化的结果。如四分之几、五分之几、八分之几化为小数的数值。

4、第4题,比较下面各组数的大小。请学生独立完成,提醒学生要学会取有效数字,如与0.33进行比较,由于化为小数是无限小数,所以在用除法把化成小数时,只要取三位小数即可,不需多取,以提高练习的效率。

5、第5题,在直线上面填上适当的分数,在直线下面填上适当的小数。学生独自填写,并仔细观察直线上下数的大小顺序。

四、实践活动。

在生活中寻找用分数或小数表示的信息,将它们写在本子上,之后再与同学进行交流。

五、总结。

谁能举例说明如何把分数化成小数,如何把小数化成分数?

板书设计:

看课外书时间(分数、小数相互转化)

谁用的时间多一些?基本方法:小时0.4小时

分数化为小数是运用分数与除法的关系,即用分子去除以分母;

小数转化成分数则是先把小数化为十进分数,再进行处理。

时间与数学教案(篇6)

教学目标:

1、在实际情境中,理解路程、时间与速度之间的关系。

2、根据路程、时间与速度的关系,解决生活中简单的问题。

3、树立生活中处处有数学的思想。

教学重、难点:

理解路程、时间与速度之间的关系。

教学准备:主题图。

教学方法:谈话法;情境教学法。

教学过程:

一、创设情景,谈话导入

1、师:在生活中,我们经常会遇到一些数学问题,这些问题和我们的日常生活息息相关,我们一起来看看吧。(出示主题图)

2、电脑出示两辆汽车进行拉力赛的情境,学生猜哪辆车会取胜呢?

接着出示条件:

第一辆2时行驶了120千米,第二辆3时行驶了210千米。

到底哪辆车跑得快呢?学生先独立思考,然后小组讨论,如何解答?

二、探索路程、时间与速度之间的关系

1、学生思考:要想知道谁跑得快,要比较什么?你有什么办法?

2、小组交流,明确:

要想知道谁跑得快,就要看看同一时间里谁跑得远,谁就快。这个同一时间在这里就是1小时,那么拖拉机1小时跑了1202=60(千米)而面包车1小时跑了2103=70(千米)60<70,因此,面包车跑得快。

3、教师引导学生了解单位时间即为:

1时、1分、1秒。在单位时间内所行驶的路程叫做速度。

本题中,拖拉机的速度是60千米/时,而面包车的速度为70千米/时。因此,面包车的速度快。

4、让学生根据这一情境学生试着表述速度、路程、时间三者之间的关系?

速度=路程时间

5、看一看。

出示生活中常见的数据,拓展学生对日常生活中速度的认识,也可以把学生课前收集到的数据进行交流。引导学生关注速度。

三、巩固练习

1、完成试一试第一题。

让学生看图,根据情境解答。

2、完成试一试第2题。

三个算式结合具体情境去体会、思考、交流、汇报。

3、完成练一练

第3题:在运算过程中让学生独立发现规律,并让学生记住一些特例。可以适当扩充。

第5题:先让学生说说根据条件,可以提出并能解决什么问题,帮助学生搞清楚三者之间的关系。特别是用△在图上做标记时,要学生讨论,说说你为什么画在这个位置上?

学生小结

四、总结谈话

这节课,你有什么收获呢?

五、课堂作业《作业本》

板书设计:


本文的网址是http://www.zfw152.com/a/5667985.html