【#范文大全# #不等式课件(范本5篇)#】经过详尽的搜寻,我们帮您整理了一些与“不等式课件”相关的资料,坚信这篇文章将会让您更加充满信心。在教学流程中,教案课件是关键环节,每位教师都需要精心地设计自己的教案课件。教案应成为满足学生自主学习和个人发展需求的重要辅助工具。
不等式课件 篇1
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.
由不等式①解得x13.
由不等式②解得x7.
从图9.3—2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。
不等式课件 篇2
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0¬ B.a≥0¬ C.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
不等式课件 篇3
七年级数学不等式课件
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.
知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系.
2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.
3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.
4.知道什么是不等式的解.
过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.
2.引导并帮助学生列出不等式,分析不等式的成立条件.
3.通过分析、抽象得到不等式的概念和不等式的解的概念.
4.通过习题巩固和加深对概念的理解.
情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.
2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.
3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.
教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念.
难点:对文字表述的数量关系能列出不等式.
教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.
教学过程:
一.研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二.新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x
结论:至少要有多少人进公园时,买30张票才合算?
概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.
3、不等式的分类:⑴恒不等式:-71+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.
三、基础训练.
例1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.
注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.
例2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例3、当x=2时,不等式x-1
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.
学生练习:课本P42练习1、2、3.
四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.
⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.
解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.
⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,
由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48
由上表可见,至少要__________人时进电影院,购团体票才合算.
五、小结:
⑴不等式的定义,不等式的'解.
⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.
六、作业课本P42习题8.1第1、2、3题.
补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.
(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
不等式课件 篇4
从课标看,方程与不等式是同属“数与代数”领域内统一标题下的两部分内容,它们之间有密切的联系,存在许多可以进行类比的内容。在前面已经学习过有关方程(组)内容的基础上,学生已经对方程有一定的认识。本章教学应充分发挥学习心理学中正向迁移的积极作用,借助已有的对方程的认识,进一步学习不等式及不等式组。
教学目标:
1.了解一元一次不等式及其有关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型。
2.通过观察、对比、归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法。
3.了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x
4.了解不等式组及其相关概念,会解有两个一元一次不等式组成的不等式组,并会有数轴确定解集。
5.通过课题学习,以体育比赛问题为载体探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。
1、知识与技能:本章教学和学习中应注意打好基础,注重对基础知识和基本技能等进行及时的归纳整理,使学生对基础知识留下深刻印象、对基本技能达到一定的掌握程度。
(1)有实际问题抽象为不等式(组)这个过程中蕴含的符号化、模型化的思想;
(2)解不等式(组)的过程蕴涵的化规思想。
3、情感、态度和价值观:
(1)认识通过观察、试验、类比可以获得数学结论,体验教学活动充满着探索性和创造性。
(2)通过探索增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,数理学好数学的自信心。
在实际生活中,同类量之间具有一种不相等的关系。这种不相等的关系是大量存在的,是普遍的,本章将从了解表示不相等关系的不等式的意义开始,研究不等式的性质、一元一次不等式和它的解法、一元一次不等式组和它的解法及应用。
①两个体重相同的孩子正在跷跷板上做游戏。现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因?
②一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?
③世纪公园的票价是:每人5元,一次购票满30张可少收1元,某班有27名少先队员去世纪公园进行活动,当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同学喊住了王小华,提议买30张票,但有的同学不明白,明明只有27个人,买30张票,岂不浪费吗?
针对李敏的提议对不对呢?是不是真的浪费呢?
合作交流,在学生充分发表自己的意见的基础上,师生共同归纳出不等式、一元一次不等式的概念。这里可添加一组,找出哪些是一元一次不等式?的练习
补充:“≥”和“≤”表示不等式关系的式子也是不等式。
利用创设情景中的第②题提问:
问题1 要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?
问题2 车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?
由此导出不等式的解集,并且配合使用教材中128页习题、134页1、2达到应用迁移,巩固提高的目的。
学生完成课本P129的观察,引出不等式的基本性质,并强调不等式基本性质3,然后,让学生自己举例来验证上述不等式的三条基本性质。配套习题:教材134页4、5、7
在这里可设置问题:在不等式-2<6两边都乘以m后,结论将会怎样?(当字母m的取值不明确时,需对m分情况讨论。);比较等式性质与不等式的基本性质的异同。问这两个问题的目的在于强化学生对不等式基本性质的理解,特别是对不等式基本性质3的理解。
解题时,要求学生要联想到解一元一次方程的思想方法,并将原题与x>a或x<a对照着用哪条基本性质能达到题目要求,同时强调推理的根据,尤其要注意不等式基本性质3和基本性质2的区别,解题书写要规范, 逐步培养学生逻辑思维的能力。
并向学生提出如下问题:
(1)解一元一次不等式的`步骤是怎样?它与解一元一次方程的步骤有何异同?
(2)解一元一次不等式时,需注意什么?
(3)解一元一次不等式的基本思想是什么?
继而归纳 解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x>a(或x<a)的形式。
注意:①勿漏乘不含分母的项;②分子是两项或两项以上的代数式时要加括号;③若两边同时乘以一个负数,需注意不等号的方向要改变。
注意:①勿漏乘括号内的每一项;②括号前面试“-”号,括号内各项要变号。
当不等号为“>”“<”时用空心圆圈,当不等号为“≤”“≥”时用实心圆圈。
注意:不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互相交换,
依据列方程解应用题的过程,对照不等式应用题的步骤,
本节课所学内容的基础上,教师应提醒学生注意:
依照题设条件列不等式时,要注意认真审题,抓住关键词语将题目所给数量关系转化相应的不等式
可由师生共同归纳出以下三种采购方案:
什么情况下,到甲商场购买更优惠?
什么情况下,到乙商场购买更优惠?
什么情况下,两个商场购买收费相同?
通过拼图验证课本第143页中的问题,给出不等式组、不等式组的解集的概念,并分析得出,解不等式组就是求它的解集也就是求不等式组中每一个不等式的解集的公共部分。配合使用教材144页例1 147页的练习练习、习题
通过练习总结如下问题:
a)你是如何确定方程组的解的?(方程组的解即是指同时满足各个方程的解)
b)方程组的解与不等式组的解有什么异同?(无论是方程组还是不等式组,它们的解均是指同时满足各个方程或不等式的解的公共部分,但方程组的解一般只有一组,而不等式组的解一般有很多范围可选择。)
c)不等式组的解的四种情形(a>b)。
若:①当 时,不等式组解集为x>a;②当 时,不等式组解集为b<x<a;
③当 时,不等式组解集为x<b; ④当 时,不等式组无解。
本节课通过欣赏精彩的体育比赛片断探究体育比赛中的不等关系问题,是对不等式应用的一个重要的深化过程。
对比赛分析的过程,可以让学生分组讨论,各抒己见,教师参与个组讨论,及时给与指导。
本次活动教师应重点关注:
(!)学生是否理解题意,并准确挖掘出问题的隐含条件,从而运用不等式描述出问题中的不等关系,得出正确结论;
(2)学生是否积极参加小组讨论,并通过交流及时解决探究中遇到的困难;
(3)学生是否善于发表自己的见解,叙述是否有条理、语言是否准确。
不等式课件 篇5
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、
现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的'概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、
2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、
利用多媒体直观演示课前引入问题,激发学生的学习兴趣、
多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、
问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果、
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
扩展阅读
不等式课件分享七篇
不等式课件【篇1】
一、教学目标:
(一)知识与技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形。
(二)过程与方法
1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点
教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点: 不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流
四、教学过程:
情景引入:1.举例说明什么是不等式?
2.判断下列各式是否成立?并说明理由。
( 1 ) 若x-6=10, 则x=16( )
( 2 ) 若3x=15, 则 x=5 ( )
( 3 ) 若x-6>10 则 x>16( )
( 4 ) 若3x>15 则 x>5 ( )
【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。
温故知新
问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?
等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?
同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?
等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
你能和小伙伴一起来验证你们的猜想吗?
学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
问题4.在不等式两边都乘0会出现什么情况?
问题5.如果a、b、c表示任意数,且a<b,你能用a、b、c把不等式的基本性质表示出来码?
【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
综合训练:你能运用不等式的基本性质解决问题吗?
1、课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。
2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?
3.火眼金睛
①a>1, 则2a___a
②a>3a,则 a ___ 0
【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
课堂小结:
这节课你有哪些收获?你认为自己的表现如何?教师引导学生回顾、思考、交流。
【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。
思考题
咱们班的盛芳同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮盛芳同学考虑一下选择哪家旅行社更合算吗?
【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。
不等式课件【篇2】
§用数学归纳法证明不等式
学习目标:1.理解数学归纳法的定义、数学归纳法证明基本步骤;
2.重、难点:应用数学归纳法证明不等式.一、知识情景:
1.关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:
10.验证n取第一个值时命题成立(即n=n?时命题成立)(归纳奠基);
20.假设当n=k时命题成立,证明当n=k+1时命题也成立(归纳递推).30.由
10、20知,对于一切n≥n?的自然数n命题都成立!(结论)
要诀: 递推基础不可少,归纳假设要用到,结论写明莫忘掉.二、数学归纳法的应用:
例1.用数学归纳法证明不等式sinn?≤nsin?.(n?N?)
证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。
(2)假设当n=k(k≥1)时命题成立,即有│Sin kθ│≤k│Sinθ│
当n=k+1时,│Sin(k+1)θ│=│Sin kθCosθ+Cos kθSin θ│
≤│Sin kθCosθ│+│Cos kθSin θ│
=│Sin kθ││Cosθ│+│Cos kθ││Sin θ│
≤│Sin kθ│+│Sin θ│≤k│Sinθ│+│Sin θ│=(k+1)│Sinθ│
所以当n=k+1时,不等式也成立。
由(1)(2)可知,不等式对一切正整数n均成立。
例2. 证明贝努力(Bernoulli)不等式:
已知x?R,且x> ?1,且x?0,n?N*,n≥2.求证:(1+x)n>1+nx.证明:(1)当n=2时,由x≠0得(1+x)2=1+2x+x2>1+2x,不等式成立。
(2)假设n=k(k≥2)时,不等式成立,即有(1+x)k>1+kx
当n=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+x+kx+ kx2>1+x+kx=1+(k+1)x 所以当n=k+1时,不等式成立
由(1)(2)可知,贝努力不等式成立。
例3 证明: 如果n(n为正整数)个正数a1,a2,?,an的乘积a1a2?an?1,那么它们的和a1?a2???an≥n.三、当堂检测
1、(1)不等式2n?n4对哪些正整数n成立?证明你的结论。
1(2)求满足不等式(1?)n?n的正整数n的范围。n
n2*2?2?n(n?N).
2、用数学归纳法证明
证明:(1)当n=1时,2?2?1,不等式成立; 当n=2时,2?2?2,不等式成立;当n=3时,2?2?3,不等式成立.
*n?k(k?3,k?N)时不等式成立,即 2k?2?k2.(2)假设当
k?1k222则当n?k?1时,2?2?2(2?2)?2?2k?2?(k?1)?k?2k?3,1222
322kk?3∵,∴?2k?3?(k?3)(k?1)?0,(*)
k?1222k?122?2?(k?1)?k?2k?3?(k?1)2?2?(k?1)从而,∴. 即当n?k?1时,不等式
也成立. 由(1),(2)可知,2?2?n对一切n?N都成立.
四、课堂小结
1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.
2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.
n2*
不等式课件【篇3】
基本不等式是初中数学中的一个重要概念,也是了解不等式的基础。在初中数学中,基本不等式是不可或缺的,它在数学中具有很重要的地位。本文将介绍基本不等式相关的主题范文。
一、基本不等式的定义和常见形式
基本不等式是指,若a、b是两个不相等的实数,则a和b的平均数大于等于它们的几何平均数,即:
$\dfrac{a+b}{2} \geq \sqrt{ab}$
其中,$\geq$表示大于等于的关系。
基本不等式还有一些常见的形式,如:
1. $a^2+b^2 \geq 2ab$
2. $a^2+b^2 \geq \dfrac{(a+b)^2}{2}$
3. $a^3+b^3 \geq ab(a+b)$
4. $a^4+b^4 \geq ab(a^2+b^2)$
5. $a^5+b^5 \geq ab(a^3+b^3)$
二、基本不等式的推导方法
基本不等式的推导方法主要有两种,一种是使用平方差公式,另一种是使用取模法。
1. 平方差公式的推导方法
若a、b是两个实数,则有:
$(a-b)^2=a^2-2ab+b^2$
$\Rightarrow a^2+b^2 \geq 2ab$
2. 取模法的推导方法
令$a=x+y,b=x-y$,其中$x,y$都是正数,则有:
$a^2-b^2=(x+y)^2-(x-y)^2=4xy$
$\Rightarrow (a+b)(a-b) \geq 4ab$
$\Rightarrow a^2+b^2 \geq 2ab$
三、基本不等式的应用范围
基本不等式在初中数学中有着广泛的应用范围,主要包括以下几个方面:
1. 解决不等关系问题
基本不等式可以用来解决各种不等关系问题,例如:
$\dfrac{a+b}{2} \geq \sqrt{ab}$
可以用来解决两个实数的大小关系问题。
2. 求最值问题
基本不等式可以用来求某些函数的最小值或最大值,例如:
设$a+b=1$,求$ab$的最大值。
由基本不等式可知:
$\dfrac{a+b}{2} \geq \sqrt{ab}$
$\Rightarrow \dfrac{1}{4} \geq ab$
因此,$ab$最大为$\dfrac{1}{4}$。
3. 证明不等式问题
基本不等式可以用来证明各种不等式,例如:
证明^n>n^2$($n$为正整数)。
当$n=1$时,^n>n^2$成立。
假设当$n=k$时,^k>k^2$成立,则当$n=k+1$时,有:
^{k+1}=2\times 2^k>2k^2$
$\Rightarrow 2^{k+1}>k^2+k^2\geq (k+1)^2$
因此,^n>n^2$成立。
不等式课件【篇4】
不等式作为数学中的一个重要概念,在数学的各个领域都有广泛的应用。从初中阶段开始学习不等式,到高中、大学乃至研究生阶段,不等式的应用都是数学学习中的一大重点。本文将详细介绍不等式的定义、性质以及常见的解题方法,帮助读者更好地理解和掌握不等式知识。
一、不等式的定义
在数学中,不等式是用来表示两个数的大小关系的一种符号。常见的不等式有大于号(>)、小于号(b表示a大于b,a
不等式的定义还可以推广到包含变量的表达式,比如一个含有x的不等式表达式:ax+b>c。在这个表达式中,a、b、c都可以是实数,而x表示一个未知数。不等式的解即是找到满足这个不等式的未知数x的取值范围。通常我们将不等式的解写成一个区间,比如x∈(m,n)表示x的取值范围在m到n之间。
二、不等式的性质
不等式有许多重要的性质,其中一些性质对解不等式问题非常有帮助。下面我们将介绍几个常见的不等式性质:
1. 传递性:如果a>b且b>c,那么有a>c。这个性质说明了不等式之间的传递关系,可以通过传递性来简化不等式的证明过程。
2. 加减性:如果a>b,那么a±c>b±c。这个性质说明了在不等式两边同时加减一个相同的数,不等式的不等关系不变。
3. 乘除性:如果a>b且c>0,那么ac>bc;如果a>b且c
4. 对称性:如果a>b,则-b
以上是不等式的一些基本性质,通过这些性质我们可以更好地理解不等式的特点,也可以在解题过程中灵活运用这些性质来简化计算。
三、不等式的解题方法
在解不等式问题时,我们可以分为一元不等式和多元不等式两种情况。对于一元不等式,我们通常使用代数法和图像法来解决;对于多元不等式,我们通常使用数学归纳法和逻辑演绎法来解决。下面我们将举例说明不等式的解题方法:
1. 一元不等式的解法:
(1)代数法:比如要求解不等式2x+1>5,我们可以通过代数计算的方式来求得x的取值范围。首先将不等式转化为等价不等式2x>4,然后继续化简得到x>2,即得到了不等式的解。
(2)图像法:对于一元不等式不等式2x+1>5,我们可以将不等式转化为方程2x+1=5,然后画出方程的图像。通过图像可以清晰地看出不等式的解在方程图像的右侧。
2. 多元不等式的解法:
(1)数学归纳法:比如对于多元不等式关系ax+by≤c,我们可以通过数学归纳法来推导得到不等式的解。首先设定一组初始解,然后逐步推导出不等式满足的所有解。
(2)逻辑演绎法:对于复杂的多元不等式,我们可以通过逻辑推理的方式来寻求不等式的解。通过分析不等式之间的逻辑关系和条件,可以确定不等式的取值范围。
通过上述例子我们可以看出,不等式的解题方法并不是一成不变的,需要根据问题的具体情况选择合适的方法来解决。不等式问题的解法多样化,需要我们在学习中多进行实践和思考,才能更好地掌握不等式知识。
四、不等式在实际问题中的应用
除了数学理论中的应用,不等式在现实生活中也有着广泛的应用。比如经济学中的供求关系、生产优化问题、资源分配问题等都可以通过不等式来描述和求解。同时,在物理学、化学等自然科学领域,不等式也广泛应用于方程组的求解和实验数据的分析中。
小编认为,不等式是数学中一个重要的概念,它不仅有着丰富的理论知识,还有着广泛的实际应用价值。通过学习不等式,可以培养我们的逻辑思维能力和问题解决能力,同时也可以帮助我们更好地理解和应用数学知识。希望本文的介绍可以帮助读者更深入地了解不等式知识,提升数学学习的效果和兴趣。
不等式课件【篇5】
基本不等式是数学中重要的基本概念之一,广泛应用于各种数学领域。基本不等式课件是帮助学生了解并学习基本不等式的一种教育工具,它能够使学生更好地掌握基本不等式的知识与技能。下面我们将从以下几个方面来谈一下基本不等式课件的相关主题。
一、基本不等式的定义和性质
基本不等式是指:正数a1、a2、……、an,b1、b2、……、bn,满足a1≥b1,a2≥b2,……,an≥bn,则有a1a2……an≥b1b2……bn。这个不等式是数学中非常基础和重要的结论,它具有以下的性质:
1. 具有可推广性和普适性。
2. 有非常明确的几何直观。
3. 可以提示我们如何证明其他不等式。
基本不等式课件需要重点讲解这个不等式的定义及其性质,让学生深入理解并能够Apply it to different mathematical problems.
二、应用基本不等式解决数学问题
基本不等式是一个非常实用的数学工具,它能够帮助我们解决各种复杂的数学问题。例如,在代数中,基本不等式可以用来证明二次函数的单调性、求解一元二次不等式等问题。在几何中,基本不等式可以用来证明不等式关于三角函数之和的问题。在概率论中,基本不等式可以用来证明某些概率分布的上界问题等。
基本不等式课件应当以实际的数学问题为背景进行授课,让学生通过实例来理解基本不等式的应用并让他们能够熟练地运用此不等式解决具体问题。
三、基本不等式的证明
基本不等式虽然被广泛应用,但是其证明并不是非常简单的。证明基本不等式的方法有很多种,常见的有数学归纳法、对数法、广义均值不等式、柯西不等式等。
基本不等式课件需要给学生最精简、最本质的证明方法,将它们讲解得清晰易懂、例证充分。只有通过了对基本不等式的证明,学生才能更好地掌握它并在实际问题中运用自如。
四、深化基本不等式的认知
除了基本不等式,还有很多与其相关的不等式,如悬链线不等式和加权形式的基本不等式等等。这些不等式都涵盖了基本不等式中的很多内容,可以进一步深化学生的认识。
基本不等式课件还应当加入一些类似悬链线不等式和加权形式的基本不等式的内容,从而深化学生们对基本不等式的认知。这样的话,会使得基本不等式的知识更加完整、全面。
总之,基本不等式是学生在学习数学过程中必须要掌握的基础知识之一。基本不等式课件的教育目标应当是帮助学生对基本不等式有一个深入透彻的认知,了解它的定义、性质和证明方法,掌握它的应用技巧,并能够在实践中运用自如。
不等式课件【篇6】
《不等式的性质(1)》教学设计
一、引入
展示任务单的数据分析,向学生明确本堂课的教学内容。
二、预习检测
学生回答“什么是不等式的性质” 不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变 不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变 不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变
三、应用1:利用不等式的性质比较大小
【例1】若a?b,判断3?2a与3?2b的大小关系.小结:利用不等式的性质比较大小的一般思路: 利用不等式的性质将“已知”逐步化成“目标
(1)教师对任务单中错误率较高的题目进行讲解;
(2)设置类似的问题作为例题,并进行巩固训练和变式训练。
【巩固】(1)若3a?4?3b?4,则a___b;(2)若?5a?7??5b?7,则a___?b,则: 【变式一】若 ①(k2?1)a___(k2?1)b ②1?k2a___1?k2b
【变式二】若a?b,试比较ka与kb的大小.【巩固】(1)若a?b,且(k?1)a?(k?1)b,则k的取值范围是______.1(2)由kx?1变形可得x?,则k的取值范围是________.k
四、应用2:利用不等式的性质解不等式
(1)针对任务单中学生解不等式时在步骤中出现的问题,教师规范解题步骤;
(2)教师分享某位同学任务单中对“不等式的性质与等式性质的异同?”的回答,小组讨论利用不等式的性质解不等式步骤中需要注意的问题;(3)学生综合范例和讨论结果,进行巩固训练和变式训练。【例2】利用不等式的性质解不等式:4y?12??2?3y.【巩固】13用不等式的性质解不等式:y?2?y?522 【变式】13已知y?2?y?5,化简y?3?(6?2y)
五、课堂小结
小组讨论分享:通过本节课的学习,“我知道了??”“我掌握了??”。
六、课堂检测
学生独立完成课堂检测,由数据反馈出本堂课的达成度
七、课后思考 布置课后思考题
利用不等式性质1,比较2a与a的大小(a?0).2,比较2a与a的大小(a?0).利用不等式性质
不等式课件【篇7】
基本不等式是高中数学中重要的一部分,也是初学者比较难掌握的一个概念。通过学习基本不等式,可以帮助学生理解不等式的基本概念、性质和运算。同时,对于高中数学,基本不等式还有很多相关的题型需要掌握,比如极值问题、夹逼定理等。本文将从基本不等式的定义开始,探讨其相关概念、性质和应用。
一、基本不等式的定义
基本不等式是指对于任意正实数a、b,有以下不等式成立:
(a + b)² ≥ 4ab
这个不等式也可以写成:
a² + b² ≥ 2ab
这个不等式的含义是:对于任意两个正实数a、b,它们的平均数一定大于等于它们的几何平均数。
二、基本不等式的证明
对于任意实数x,y,可以用(x-y)²≥0来证明基本不等式:
(x-y)²≥0
x²-2xy+y²≥0
x²+y²≥2xy
将x换成a、y换成b,即可得到基本不等式。
三、基本不等式的相关概念
1. 等式条件:
当且仅当a=b时,等式成立。
2. 平均数与几何平均数:
平均数指的是两个数的和的一半,即(a+b)/2;几何平均数指的是两个数的积的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均数大于等于几何平均数的结论。
3. 关于两个数之和与两个数的比值的关系:
从基本不等式得到如下两个等式:
(a+b)²=4ab+(a-b)²;ab≥(a+b)/2
以上两个式子给出了两个关于两个数之和与两个数的比值的关系。
四、基本不等式的性质
1. 交换律和结合律:基本不等式满足交换律和结合律。
2. 反比例函数:若f(x)=1/x,x>0,则f(a)+f(b)≤2f((a+b)/2)对于a,b>0成立。
3. 带约束的基本不等式:若a,b>0,且a+b=k,则(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的应用
1. 求证夹逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,则(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判断一个二次函数的最大值或最小值:由于二次函数的导数为一次函数,可以通过求导得到函数的极值。而基本不等式可以用于判断二次函数的极值点是否合理,即是否在定义域内。
3. 算术平均数和几何平均数之间的关系:通过基本不等式可以证明,当两个数的和固定时,它们的平均数越大,它们的几何平均数就越小。
总的来说,基本不等式是高中数学不可缺少的一部分,不仅在考试中占有重要地位,而且还具有很重要的理论意义。希望本文对初学者掌握基本不等式有所帮助。
等式课件9篇
身为经验丰富的编辑,我特别推荐这篇经典的“等式课件”。在正式上课前,老师需要提前准备好本学期的教学教案课件,现在开始着手准备也不算晚。教案是成为一位优秀教师所必备的条件。我们提供的建议仅供参考,您可以根据自己的需求进行调整!
等式课件 篇1
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0¬ B.a≥0¬ C.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。
成也审题败也审题。如何审题呢?
(1)这个题目有哪些个已知条件?我能不能把已知条件分开?
(2)求解的目标是什么?对求解有什么要求?
(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。
(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?
(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?
等式课件 篇2
今天我要为大家讲的课题是等式的性质。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:在掌握了一元一次方程的概念及其初步应用后,需要解决的是一元一次方程的解法,本节的内容是《你今年几岁了》第二课时,借助于等式的性质来解一元一次方程。为下几节的学习铺平道路.首先通过天平的实验操作,使学生学会观察、尝试分析、归纳等式的性质。然后,利用等式的基本性质解一元一次方程。通过解方程的学习提高了学生观察问题、解决问题的能力.
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
a、知识目标:
(1)通过天平实验让学生探索等式具有的性质并予以归纳。
(2)能利用等式的性质解一元一次方程。
b、能力目标:通过实验培养学生探索能力、观察能力、归纳能力和应用新知的能力。
c、 情感目标:通过实验操作增强合作交流的意识。
3、重点:利用等式的性质解方程。
4、难点:对等式的性质的理解及应用。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二:教学策略(说教法):
㈠教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法
2:图表分析法
3:读图讨论法
4:教学过程中坚持启发式教学的原则
㈡教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据初二学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式数学教学法,师生交谈法、图像信号法、问答法、数学课堂讨论法,引导学生根据现实生活的经历和体验及收集到的数学信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的数学知识和技能,增强学生的生存能力,使所学的内容不仅对学生现在的生活和学习有用,而且对他们的终身学习和发展有用。在教学中要积极培养学生数学学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三:学情分析:(说学法)
1 、学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业等五个部分。
(二):教学简要过程:
1:复习提问:
2:导入讲授新课:
3:课堂练习:
4:新课巩固:
5:作业布置;
等式课件 篇3
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)
[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]
3、尝试练习,应用新知
小黑板出示下列练习
一:孙悟空火眼金睛:
1、如果x+5>4,那么两边都可得x>-1
2、在-7<8的两边都加上9可得。
3、在5>-2的两边都减去6可得。
4、在-3>-4的两边都乘以7可得。
5、在-8<0的两边都除以8可得
二:你来决策:
如果a>b,那么
1、a-3 b-3(不等式性质)
2、2a 2b(不等式性质)
3、-3a -3b(不等式性质)
4、a-b 0(不等式性质)
[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]
出示例题
例1根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:
(1)x-5>-1(2)-2 x>3
(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)
解(1)根据不等式的性质1,两边都加上5得:
x-5+5>-1+5
即x>4
(2)根据不等式的性质3,两边都除以-2得:
即x<-3/2
练习:根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:
(1)3x>5(4)-4 x<3-x
[设计意图:由于新教材中例题较少,学生对于书写格式了解太少,因此教师应该加以规范。]
4、总结反思,获得升华
让学生从知识方面、能力方面、思想方面进行总结。鼓励学生畅所欲言总结对本节课的收获与体会。
[设计意图:让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。]
5、布置作业,深化巩固
必做作业:习题11.2第二题推荐作业:课本中的试一试。
[设计意图:这样做的目的在于,让不同层次的学生都有不同程度的提高。]
七、板书设计:
为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。本着板书的科学性,条理性原则,设计板书如下:
11.2不等式的基本性质 不等式的基本性质 1:如果ab,那么a+c>b+c,a-c>b-c(2)-2 x>3 2:如果a>b,c>0,那么ac>bc 如果a0,那么acb,cbc例:(1)x-5>-1>
等式课件 篇4
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、
现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的'概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、
2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、
利用多媒体直观演示课前引入问题,激发学生的学习兴趣、
多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、
问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果、
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
等式课件 篇5
教学内容
教科书第6页的7~12题
教学目标
1、通过练习,使学生进一步体会方程的含义。
2、进一步理解等式的性质,能根据等式的性质正确地解方程。
重点:
使学生在学生与探索的过程中进一步培养独立思考、主动与他人合作交流、自动检验等习惯,并获得成功的体验,树立进一步学好数学的信心。
难点:
培养学生独立思考、主动与他人合作交流、自动检验等习惯。
流程
教师、学生活动
设计意图
㈠
基础
练习
一、基础练习
1、说出下面的式子哪些是方程,哪些不是,为什么?
20+17=3712-Y=4a+12=35
21-b<14x=14+2316+a=27+b
2、解方程
X+125=370520+X=710X-4.9=6.4
120-X=257.8+X=2.5X+8.5=12
学生独立完成,指名学生板演。
学生独立完成,集体订正,帮有错的同学分析错误原因,使其明白。学生板演。
㈡
练习
第7题
学生独立完成后指名回答,让学生说说是怎样想的。
使学生明白:根据等式的性质是含有未知数的一边只剩下未知数,就能很快知道最后的结果。
引导学生列方程解决简单实际问题,既有利于学生进一步巩固列方程解决实际问题的方法,又能拓宽学生的知识视野。
第9题
先由学生独立完成。
指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我
们在做题时要注意一些什么?
第8题
学生独立完成,指名板演。
教师要特别关注前面解题还有错的学生,争取人人过关。
集体订正,分析错误原因。
让学生自己找出错误,再通过交流弄清错误的原因。
第12题
学生读题后独立思考解决问题的方法。
小组内交流。
全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。
引导学生用画图或列表的方法表示出题目的条件和问题,再启发学生利用等式的性质进行思考。
㈢
课堂
作业
第6页的第10、11题。
利于激发学生的学习兴趣。培养环保意识。
等式课件 篇6
(一)复习提问:
三角形的三边关系?
(二)列一元一次不等式组
问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.
探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?
可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.
由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②
注:木条c必须同时满足两个条件,即ca+b,ca-b.
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.
(三)一元一次不等式组的解集
类比方程组的解,怎样确定不等式组中x的可取值的范围呢?
不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.
注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.
由不等式①解得x13.
由不等式②解得x7.
从图9.3—2容易看出,x可以取值的范围为713.
注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.
这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.
注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。
等式课件 篇7
初中的数学内容较小学教学内容更系统和深入,涉及面更广。因此,教师在教学中应该注重基础知识的教学,帮助学生打下厚实的基础,以利于学生以后的数学学习。首先应该摆正师生关系,在中国的教育当中一直强调着“师道尊严”。教师在课堂上一般都是居高而上,普遍都是教师在讲台上讲,学生在下面埋头“消化”教师讲的知识点。教师掌握着上课的节奏,这样学生显得很被动。在初中不等式教学当中涉及很多的知识点,学生仅仅知道一些公式而不会运用是教学的一种失败。基础知识在教学当中就显得尤为重要。
不等式的解题方式多样,内容丰富,技巧性较强并且要依据题设、题的结构特点、内在联系、选择适当的解题方法,就要熟悉解题中的推理思维,需要掌握相应的步骤、技巧和语言特点。而这一切都是建立在学生有夯实的基础之上的。学生的基础知识不扎实的话,在解不等式题时就步履维艰。 夯实的基础来源于学生对不等式概念知识的掌握和运用,而概念的形成有一个从具体到表象再到抽象的过程。对不等式抽象概念的教学,更要关注概念的实际背景和学生对概念的掌握程度。数学的概念也是数学命题、数学推理的基础,学生学习不等式知识点也是从概念的学习开始的。所以在不等式教学探究中教师应注重学生的基础。
提高初中数学不等式教学效果,首先要培养学生主动探索数学知识的精神,通过寻求不同思维达到解题效果来激发学生对数学学习的兴趣。引导学生主动去对数学不等式知识进行探究,通过结合所学的数学知识来形成一个完整的知识网络,以帮助学生完成更深入地数学知识探究。
同时初中数学不等式知识点的学习对学生归纳能力提出了较高的要求。灵活使用概念能够帮助学生熟练地运用数学知识,对不等式这一章节知识点的掌握归纳和整理进行综合的运用从而能够成功地解题。例如,在含有绝对值的不等式当中:解关于x的不等式2+a0时,解集是;(2)当-2≤a
要把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,掌握解决问题的技能,并形成自主学习的能力。创设促进自主学习的问题情境,首先教师要精心设计问题,鼓励学生质疑,培养学生善于观察、认真分析、发现问题的能力。其次,要积极开展合作探讨,交流得出很多结论。当学生所得的结论不够全面时,可以给学生留下课后再思考、讨论的余地,这样就有利于激发学生探索的动机,培养他们自主动脑、力求创新的能力。如在讲解等比数列的通项公式时,采取实例设疑导入法。通过创设一个问题情境,就把复杂、抽象而又枯燥的问题简单化、具体化、通俗化,同时也趣味化,提高了学生学习数学的兴趣。合作学习为学生的全面发展,特别是学生个体的社会化发展创造了适宜的环境和条件。
教学实践中,我们注意到:在很多情况下,正是由于问题或困难的存在才使得合作学习显得更为必要,每节新课前教师应要求学生依据导学提纲预习本节内容,要求将学生在预习中遇到的问题记录在笔记本的主要区域,课前预习中不能解决的问题课堂中解决,课堂中未弄明白的问题课后解决,个人无法解决的问题小组解决,小组无法解决的问题请教老师,实现真正的“兵教兵,兵练兵,兵强兵”,没有问题就寻找问题,鼓励引导学生在同桌、临桌之间相互探讨,让学生在课堂上有足够的时间体验问题的解决过程,更多地鼓励学生独立审题、合作探讨,把问题分析留给自己。这种做法的出发点就是避免学生对教师的过分依赖,当然,他们归纳基本步骤和要点遇到困难时,教师应施以援手。
学校最重要、最基本的人际关系是教学过程中教师和学生的关系,教师要善待每一名学生,做他们关怀体贴、博学多才的朋友,做他们心灵智慧的双重引路人。“亲其师而信其道”“厌其师而弃其道”,平等、尊重、倾听、感染、善待理解每一名学生,这是为师的底线和基本原则,而高素质、时代感强,具有创新精神的教师,正逐渐成为学生欣赏崇拜的对象。
现在,学生正从“学会”变为“会学”,教师正从“讲”师变为“导师”,课堂中新型的师生关系正逐步形成。总而言之,为了在课堂上达到师生互动的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠并不断更新;教学技巧是手段,必须生动活泼、直观形象,师生互动是平台,必须师生双方融洽和谐、平等对话。
在农村中学,很多学生都是留守儿童,父母常年在外打工,很多学生缺少关爱,特别是情感方面的.这时,作为教师,就应该拿出我们的爱心,去关心和帮助这些学生,这时学生和你亲近了,对你所教的科目也就产生了兴趣,成绩自然而然就上去了.如果你对学生不闻不问的,甚至还去打击,那么这些学生肯定就会对你抱有成见,久而久之,学习兴趣全无,成绩就会大幅度下降.
如果我们教师照搬课文来进行教学,那么相对来说肯定是枯燥的,无趣的,学生学起来就会感觉无味,自然就提不起学习数学的兴趣.所以我们教师要将课本的知识尽量转化为有趣的问题或者活动来进行教学.比如,在研究“视图”时,可引入游戏.在讲台上放一个物体,然后将学生分为几个组,并让这几个组从不同的方位去观察它,并将自己看到的几何图形画出来.这样不仅使学生学到了数学知识,也锻炼了学生的动手能力和合作能力.
初中生都是一帮15岁左右的小孩,在这个年龄段,学生的好奇心是很强的,对很多事物都会很感兴趣.所以针对这一特殊心理特征,我们教师可以大胆地创设一些使学生产生强烈好奇心的实际问题,从而更好地提高学生的兴趣.例如,在讲解乘方的时候,可让学生讨论:给你一张足够大的纸,对折六十次后有多高?学生讨论后,教师再告诉他们结果,这时学生会觉得非常好奇、非常惊讶(因为他们想不到会有教师说的那么高),这样学生对学习乘方就产生了很大的兴趣.
教师创设的问题情境都应具备目的性、新异性和适度的障碍性,从而激发学生强烈的求知欲,保持学生自主探究的热情,发挥学生的创造潜能,取得最佳的教学效果。兴趣是最好的老师,是创新的源泉、思维的动力,也是产生学习动机的主观原因。从心理学上来说,兴趣可以使感官和大脑处于最活跃的状态,引起学习中高度注意,使感知清晰,想象活跃.记忆牢固,能抑制疲劳,产生愉快情绪,能以最佳心态获取信息。学生一旦有了用数学解决问题的兴趣,就会积极地去实践,这对思维能力的培养非常重要。
小学生每接触一种新生事物,都有一定的好奇心,教师应抓住学生的心理特征,适当引导,就会激起学生的求知欲,使学生产生一定的兴趣。比如:在教学《角的初步认识》时,用校园环境情景图来激发学生的学习兴趣,学生纷纷投入了角的认识这一知识的学习之中,他们绘声绘色地描述了角,对角有了深刻的认识。之后,我又把枯燥的数学习题编成一个个故事,把学生带入快乐的情境中,学习兴趣一下子被调动起来,他们积极参与学习,探索角的有关知识,进一步理解了角的含义,这样不但引发了学生的思维,而且还增加了记忆能力。
习题,看似平常的知识,殊不知在习题中隐含着扩展数学功能的作用。在解答习题时,学生各方面的能力都会得以形成,思维的独立性和创造性也得到发展。首先利用一题多解培养学生发散思维,教学实践告诉我们,学生的创新思维能打破习惯程序而赋予开拓意识。因此,在处理教材习题时,应引导、鼓励学生大胆质疑,进行联想,使思维更加活跃。例如:在教学六年级下册圆柱表面积计算时便遇到了这样一道习题“有一个由圆柱体和长方体组成的路灯座,长方体长12厘米、宽16厘米、高12厘米。圆柱底面直径是12厘米、高55厘米。
要将这个路灯座漆上白色的油漆,要漆多少平方米?(上面是长方体,下面是圆柱体)”在引导学生弄明白题意后,便让他们独立思考。学生感到很难,便向我摇头示意。这时,我便把事先准备好的长方体和圆柱体发给学生,让他们摆一摆,看看有什么发现,学生们通过动手操作,找到了解题办法。可是,这些解题方法对于中下等的学生理解起来还是困难重重。针对这种现象,我又提示大家,能不能找到什么规律?学生们再次进行研究性学习,经过讨论,他们把这道题的解法列成了公式型,即:路灯座的表面积=长方体的表面积+圆柱的侧面积-圆柱的底面积。看来,一道题中蕴藏着多种解题方法,在教学中教师要善于引导和鼓励学生多动脑筋,发散自己的思维,找到解题的办法,给思维插上翅膀,使学习效率倍增。
等式课件 篇8
一、说教材分析
地位和作用:
教材从对于比较复杂的方程难以用估算求解切入,引出对等式性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法进行铺垫。学生探究等式的性质过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。
教学目标:
(1)知识与能力:理解并能用语言表述等式的性质,能用等式的性质解决问题。
(2)过程与方法:通过观察实验培养学生探索能力、观察能力、概括能力和应用新知的能力,渗透“化归”的思想。
(3)情感与态度:通过实验操作增强师生合作交流的意识。
教学重点:
引导学生探索发现等式的性质,利用等式的性质解决简单问题。
教学难点:
抽象归纳出等式的性质。
教学准备:
天平、导学案及多媒体课件
二、说教学策略与方法分析
有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式,这也是生本课堂“三学小组”教学模式积极倡导的重要学习方式。在本节课的教学中,我利用学生动手操作、多媒体展示,通过观察法、实验法、合作交流、归纳法等教学方法,引导学生预学——互学——评学,遵循由浅入深,由具体到抽象的规律,努力为学生营造一个宽松、民主、和谐的学习环境,让学生们在探索、交流中理解和运用等式的基本性质;
三、说教学流程及设计意图
(一)独立自学
预学:请同学们认真看教材81页第一、二两段内容,结合所学知识回答下列问题;
1、我们把的等式叫方程;用“ ”表示关系的式子叫做等式,可以用表示一般的等式;请举几个等式的例子;
2、能说出方程4x=24,x+1=3的解吗?试一试;
3、79页例1第(2)题我们所列的方程是:能估算出这道方程的解,从而解答这个问题吗?
设计意图:1、2两个问题都来源于教材,比较简单,学生容易解决。第3个问题让学生会感到解决起来有一定的困难,学生对后面即将学习的知识必然引起重视,同时也产生了学好新知再来解决困难的浓厚兴趣,就此引入本节课的课题;
(二)合作互学
动手操作,探究规律:把手中的天平调到平衡状态,在天平两端放置不同的物品,什么时候天平可以平衡?(平衡状态下的天平可以用等式表示)如果在平衡的天平的左端放入一个砝码,天平还平衡吗?怎样做天平才能平衡呢?如果把放入左边的砝码拿掉,又有什么发现呢?
1、通过观察,可以发现什么规律?
规律:
2、归纳:
等式的性质1
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
【继续探究】:如果在平衡的天平的左端放入与左端一样的砝码若干个,怎样才能使天平平衡呢?如果把放入天平左端的砝码拿掉,又有什么发现呢?
1、发现的规律是:
2、类比等式的性质1,可以归纳:
等式的性质2
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
3、【知识延伸】等式除了以上两条性质外,还有其他的一些性质。
(1)对称性:等式的左、右两边交换位置,所得的结果仍是等式。即如果a=b, a=b那么b=a 。
(2)传递性:如果a=b,且b=c,那么a=c。
设计意图:我设计了探究天平平衡规律实验的教学环节,让学生以小组合作的形式讨论实验步骤并动手操作,在增减重物的过程中认识、归纳天平的平衡规律,让学生汇报实验步骤与结论,并用数字等式的形式表现实验结果,进而共同归纳出等式的性质1.在探究等式的性质2时,我为了加深学生印象,同时也为了培养学生数学思维的发展,提出问题:如果将性质1中的“加”改为“乘”、“减”改为“除以”,结果还会相等吗?让学生大胆猜想,并通过天平实验和数字等式实例变形进行验证,再得出等式的性质2.按照这样的设计,学生必然会充分地参与到探究等式性质的活动中来,既培养了学生团结协作、动手操作、勇于实践的探索精神,又增强了设计实验、类比猜想、归纳建模的学习能力,同时获得的知识也必然印象更深。
(三)展示竞学
1、若X=Y,则下列等式是否成立,若成立,请指明依据等式的哪条性质?若不成立,请说明理由?
(1)X+ 5=Y+ 5(2)X-= Y-
2、如果3x=2x+5,那么3x+______=5;根据等式性质
变式1、如果a-3=b-2,那么a+1=_________;根据等式性质
变式2、从3x+2=3y+2中,能不能得到x=y,依据是什么?
设计意图:这几道练习题主要是等式两条性质的基本运用,练习题的设计我遵循了“低起点,小台阶,循序渐进”的要求,符合七年级学生接受知识的年龄特点,培养了学生运用所学新知解决问题的习惯,使学生能享受到运用新知可以解决新的数学问题的愉悦感。
(四)精讲导学
精讲例题:阅读理解题:下面是小明将等式3x-2=2x-2变形的过程。
设计意图:通过精讲展示竞学部分学生可能有疑惑或解决不了的问题,让学生加深理解等式两条性质运用的条件,设计的变式训练由易到难,目的是巩固基础、提高能力;另外还有一个阅读理解题,目的是让学生在发现错误,并纠正错误的过程中,可以提醒自己在运用时不要犯这样的错误,并加深对等式的两条性质的理解;
(五)小结评学
设计意图:我设计了两个问题:一是你在本节课上有哪些收获?二是你还有哪些疑惑?主要是鼓励学生能畅所欲言,使知识得到深化,能力得到提高;同时通过对学生个人的评价和学习小组的评价,有利于培养学生上课认真听讲,积极思考回答问题,以及荣誉感意识,增强学习数学的自信心;
最后,关注学生的学习体会和感受,提出:通过本节课你学到了什么?
(六)检测固学
1、下列等式的变形中,不正确的是()。
A.若x=y,则x+5=y+5
B.若(a≠0),则x=y
C.若-3x=-3y,则x=y
D.若mx=my,则x=y
2、若,则a=___;若(c2+1)x=2(c2+1),则x=____。
3、填空,使所得结果仍是等式,并说明结果是根据等式的哪一条性质及如何变形得到的?
(1)若2x-4=5,则2x=5+,根据等式的性质
(2)若4x=3x-6,则4x+ =-6,根据等式的性质
(3)如果x=5,那么x=________;根据等式性质
(4)如果0.5m=2n,那么n=_______;根据等式性质
(5)如果-2x=6,那么x=________.根据等式性质
4、若b=3a+6,c=3,且b=c求a的值;
变式:若b=3a+6, c=a,且b=c求a的值;
设计意图:
通过典型,多样化的练习题,尤其是“变式练习”进一步强化技能,提高能力,加深对等式的两条性质的理解和运用;
等式课件 篇9
数学教案-不等式的证明(二)
第二课时
教学目标
1.进一步熟练掌握比较法证明不等式;
2.了解作商比较法证明不等式;
3.提高学生解题时应变能力.
教学重点 比较法的应用
教学难点 常见解题技巧
教学方法 启发引导式
教学活动
(一)导入新课
(教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评.
(学生活动)思考问题,回答.
[字幕]1.比较法证明不等式的步骤是怎样的?
2.比较法证明不等式的步骤中,依据、手段、目的各是什么?
3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗?
[点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题)
设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)提出问题,引导学生研究解决问题,并点评.
(学生活动)尝试解决问题.
[问题]
1.化简
2.比较 与 ( )的大小.
(学生解答问题)
[点评]
①问题1,我们采用了因式分解的方法进行简化.
②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小.
设计意图:启发学生研究问题,建立新知,形成新的知识体系.
【例题示范,学会应用】
(教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程.
(学生活动)分析,研究问题.
[字幕]例题3 已知a,b是正数,且 ,求证
[分析]依题目特点,作差后重新组项,采用因式分解来变形.
证明:(见课本)
[点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.
[点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.
[字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,问甲、乙两人谁先到达指定地点.
[分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为 ,要回答题目中的问题,只要比较 、的大小就可以了.
解:(见课本)
[点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.
设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.
【课堂练习】
(教师活动)教师打出字幕(练习),要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.
(学生活动)在笔记本上完成练习,甲、乙两位同学板演.
[字幕]练习:1.设 ,比较 与 的大小.
2.已知 ,求证
设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.
【分析归纳、小结解法】
(教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.
(学生活动)与教师一道小结,并记录在笔记本上.
1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.
2.对差式变形的常用方法有:配方法,通分法,因式分解法等.
3.会用分类讨论的方法确定差式的符号.
4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.
设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.
(三)小结
(教师活动)教师小结本节课所学的知识及数学思想与方法.
(学生活动)与教师一道小结,并记录笔记.
本节课学习了对差式变形的一种常用方法——因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题.
通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.
设计意图:培养学生对所学的知识进行概括归纳的`能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学思想方法.
(四)布置作业
1.课本作业:P17 7、8。
2,思考题:已知 ,求证
3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)
设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.
(五)课后点评
1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.
2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用
一元一次不等式课件
我为您推荐的“一元一次不等式课件”或许能够帮助您打开崭新的视界,请您务必将本文收藏以便日后回顾。教师们在上课之前需要准备教案和课件,只要在课前将教案和课件准备好即可。制定和实施教案是教师专业能力发展的重要体现过程。
一元一次不等式课件 篇1
学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
一元一次不等式组的解法
学习难点:
一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式 ,并把解集在数轴上表示出来。
【预习】
1、 认真阅读教材34-35页内容
2、__________叫做一元一次不等式组。
_________叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的解集,并在同一条数轴上表示出来
二、探究活动
【例题分析】
例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?
例2. (问题2)题中的相等关系是什么?不等关系又是什么?
例3. 解不等式组
【小结】
不等式组解集口诀
同大取大,同小取小,大小小大中间找,大大小小解不了
一元一次不等式组解集四种类型如下表:
不等式组(a)
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
无解 大大小小解不了
【课堂检测】
1、不等式组 的解集是( )
A. B. C. D.无解
2、不等式组 的解集为( )
A.-1
3、不等式组 的解集在数轴上表示正确的是( )
A B C D
4、写出下列不等式组的解集:(教材P35练习1)
三、自我测试
1.填空
(1)不等式组x-1 的解集是___;
(2)不等式组x-2 的解集 ;
(3)不等式组x1 的解集是____;
(4)不等式组x-4 解集是____。
2、解下列不等式组,并在数轴上表示出来
四、应用与拓展
若不等式组 无解,则m的取值范围是 _____.
一元一次不等式课件 篇2
一元一次不等式与实际问题练习题
1、在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,则至少要答对几道题,其得分才会不少于80分?
2、某次数学竞赛有50道选择题,评分标准为答对一题2分,答错一题倒扣1分, 不答题不得分,也不扣分,某学生4道题没有答,但得分超过70分,取得了复赛资格,问他可能答对多少道题?
3、有人问一位老师,他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学英语,七分之一的学生在学音乐,还剩不足六位同学在操场上踢足球”.试问这个班有多少学生?
4.七年级6班组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔多少支.5、某个体商店第一天以每件10元的价格购进某种商品15件,第二天又以每件12元的价格购进同种商品35件,然后以相同的价格卖出,如果商品销售这些商品时,至少要获得10%的利润,这种商品每件的售价应不低于多少元?
6、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
7.某市自来水公司按如下标准收取水费,若每户每月用水不超过5cm3,则每立方米收费 元;若每户每月用水超过5cm3,则超出部分每立方米收费2元。小童家某月的水费不少于 10元,那么她家这个月的用水量至少是多少?
8.某城市一种出租车起价为5元,(即行驶路程在千米以内都只需付5元,达到或超过千米后每增加1千米加价元,(不足1千米按1千米算).现在某人乘这种出租车从甲地到乙地,支付车费元,则甲地到乙地路程大约是多少千米?
9.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:
(1)该采购员最多可购进篮球多少只?
(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则 采购员至少要购篮球多少只,该商场最多可盈利多少元?
10、某电信公司的“全球通”手机用户的收费标准是:不管通话时间长短,每月必须缴月租费30元,另外每通话1分钟交费元;“快捷通”手机用户的收费标准是:没有月租费,但每通话1分钟交费元。
(1)设每月通话时间为x分,试分别写出“全球通”每月应交费和“快捷通”每月应交费。
(2)当每月的通话时间x在什么范围时,选择“全球通”较合算?
(3)当每月的通话时间x在什么范围时,选择“快捷通”较合算?
一元一次不等式课件 篇3
一元一次不等式组(一)
教学目标
1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;
2.使学生逐步学会用数形结合的观点去分析问题、解决问题. 教学重点和难点
重点:掌握一元一次不等式组解集的含义. 难点:求不等式组中各不等式的解集的公共部分. 课堂教学过程设计
一、从学生原有的认知结构提出问题
1.什么叫不等式?不等式的解?不等式的解集?解不等式?
3.将第2题中的不等号改为等号所得的一元一次方程的解是什么?不等式的解集与方程的解有什么不同?
4.(投影)在数轴上表示下列不等式的解集:
(1)x>2;(2)x<-1;(3)x≥2;(4)x≤-2;(5)1<x<3;(6)-3≤x<0.
5.(投影)将下列各图中数轴上的点的集合用不等式来表示.(学生口答完成)
在学生解答完上述各题的基础上,教师指出,我们知道,物体A的重量x克大于2克,且小于3克,就是说,x的取值要使不等式x>2与x<3同时成立.
而将一元一次不等式x>2与x<3合在一起,就组成了一个一元一次不等式组,记作
本节课,我们就来学习一元一次不等式组及其解法.
二、讲授新课 1.利用数轴的直观性,师生共同得出一元一次不等式组解集的概念 首先,在数轴上表示不等式①,②的解集,如下图.
其次,可向学生提出如下问题:
(1)通过观察,要使不等式①,②同时成立,则x的取值范围是什么?(2)这个取值范围,是不等式①,②的解集的什么? 进一步追问,什么叫一元一次不等式组的解集?
最后,板书一元一次不等式组的解集的定义.
一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.
求不等式组的解集的过程,叫解不等式组.
例1(1)在同一数轴上表示x<2,x>-3的解集.(2)在同一数轴上表示x>-4,x>-1的解集.(3)在同一数轴上表示x<2,x<-3的解集.(4)在同一数轴上表示x>2,x<-1的解集.
若上述各题中的解集有公共部分,用不等式表示出来.(此题可由学生板演来完成). 解:
此时,教师指出:由上例可以看出,由不等式x>-3或x<2合在
类似的,上例中
练习
解不等式组:
(本练习,应继续巩固学生利用数轴的直观性解不等式组的能力)2.启发学生总结解一元一次不等式组的方法及步骤 例2 解不等式组:
师生共同分析:我们知道,解不等式组就是求不等式组解集的过程.那么如何求不等式组的解集呢?(让学生想一想,然后请几名学生回答)应首先求出不等式①和②的解集,然后利用数轴找出这两个解集的公共部分,就是不等式组的解集.
解:解不等式①,得x>2,解不等式②,得x>3,在数轴上表示不等式①,②的解集.
所以这个不等式组的解集是x>3.
(首先让两名学生分别解出不等式①,②然后回答不等式组解集.教师板书解答过程,并用彩笔在数轴上把相应的部分描述出来,以使学生感到醒目,加深理解记忆)例3 解不等式组:
解:解不等式①,得x<3,在数轴上表示为
(本题让一名学生板演,其余学生在练习本上自己完成,教师巡视,并及时纠正学生在解题过程中出现的问题)结合上面两个例题,教师应让学生思考并回答,解一元一次不等式组的方法及步骤是什么?
解一元一次不等式组可以分为以下两个步骤:
(1)求出这个不等式组中各个不等式的解集;
(2)利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集.(若各个不等式的解集无公共部分,则此不等式无解)
三、课堂练习1.填表:(投影)
2.解下列不等式组:
四、师生共同小结
首先,让学生回答以下问题: 1.本节课我们学习了哪些内容?
2.什么叫一元一次不等式组的解集?什么叫解不等式组? 3.解一元一次不等式组的步骤是什么?
4.若一元一次不等式组中,不等式的个数多于两个时,解集的求法有无变化?结合学生的回答,教师指出,一元一次不等式组的解集是这个不等式组中各个不等式的解集的公共部分;当不等式个数多于两个时,求解方法没有变化.
五、作业
解不等式组:
课堂教学设计说明
在设计教学过程时,注意到了学生的年龄特点.遵循由浅入深、循序渐进的原则,并注意利用数轴的形象、直观来表示不等式组的解集.
一元一次不等式课件 篇4
一元一次不等式组
教学目标:1.学生通过生活实例,了解一元一次不等式组的意义和一元一次不等式组的解集的概念。
2.学生能利用数轴熟练的确定一元一次不等式组的解集,培养学生的观察能力,分析能力。
3.掌握由两个一元一次不等式所组成的不等式组的解集的四种情况。
4.学生通过对一元一次不等式组的学习,认识到事物间的相依关系。
教学重点:根据一元一次不等式组的四种情况,说出一元一次不等式组的解集。教学难点:利用数轴确定一元一次不等式组的解集。教学过程: 一.创设情境:
1.你能列出解决这个问题的式子吗?
(小黑板)某学校初一()班准备一次秋季外出考察活动,该班级共有学生40人。学校根据预算要求该班这次活动的总经费不能超过2400元;旅游公司按成本计算这次活动总经费不能低于2000元。如果考虑双方的要求,学生所付的经费应该在哪一范围之内?
学生列式:设每人所付的经费为x元 40x≤2400 40x≥2000
?40x?2400 同时满足两个条件,列成不等式组 ?
?40x?2000给出定义:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
2.(小黑板)判别下列不等式组中哪些是一元一次不等式组,并说明为什么?
?x?0?x??3?x?2(1)?(2)?(3)? x?3?0y?3x?4????2x?3?54x?1?0???3x?1?4?(4)?(5)?2(6)?3x?2?1
??x?3?0?x?y?1?x?9?0?二.尝试探究:
1.问题:怎样确定不等式组的解集呢? ?40x?2400?x?60 比如:?的解集怎样确定呢??这个式子就是不?40x?2000?x?50等式组的解集吗?
2.利用数轴来确定不等式组的解集
?x?3?x?3?x?3?x?3 例:(1)?(2)?(3)?(4)?
?x??1?x??1?x?-1?x??1 本题教师和学生共同完成
巩固练习:(书四题,学生练习,学生板演,小组互相检查,教师巡视指导)
小组讨论:当a>b时,如何确定下列不等式组的解集?
?x?a?x?a?x?a?x?a(!)?(2)?(3)?(4)?
?x?b?x?b?x?b?x?b 课后思考:当a
三.归纳小结:
1.本节课我们认识了什么是一元一次不等式组及其解集,并学会了利用数轴来确定不等式组的解集。(利用例题中四个不等式组解集情况说明不等式组解集取法)
2.一元一次不等式组和二元一次方程组类似,也有不同的地方。两者都是由两个或几个一次式组成,但不等式组是同一个字母,方程组中有两个字母。3.具体求不等式组解集的方法,下节课我们接着学习。
四.布置作业:
练习册B册习题
同步练习
一元一次不等式课件 篇5
1、由“弹簧挂物问题”导入
把教学内容转化为具有潜在意义的`问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。在本问题中使学生感受到一元一次不等式、一元一次方程、一次函数的内在联系
2、导疑:得出本课新的知识点是:一元一次不等式、一元一次方程、一次函数的内在联系
3、导研:讲解例题。……我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:引导学生围挠一元一次不等式、一元一次方程、一次函数的内在联系展开从多个角度进行思考。
4、导练:课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、导评:总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
7、板书。
8、布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
(教学程序:
(一):课堂结构:导入、导疑、导研、导评、导练、布置作业等几部分。
(二):教学简要过程:
1:复习提问:(理由是:);2:导入讲授新课:;3:课堂练习:4:新课巩固:5:作业布置;)
五:作业布置:略
一元一次不等式课件 篇6
1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题。
2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系。
3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学重点:
寻找实际问题中的不等关系,建立数学模型。
教学难点:
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的.优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。如果你是校长,你该怎么考虑,如何选择?
探究新知1、分组活动。先独立思考,理解题意。再组内交流,发表自己的观点。最后小组汇报,派代表论述理由。
2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:
(1)什么情况下,到甲商场购买更优惠?
(2)什么情况下,到乙商场购买更优惠?
(3)什么情况下,两个商场收费相同?
3、我们先来考虑方案:
设购买x台电脑,如果到甲商场购买更优惠。
在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x。
教师最后作适当点评。
解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施。甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费。顾客选择哪个商店购物能获得更多的优惠?
问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑。你认为应分哪几种情况考虑?
分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。
最后教师总结分析:
1、如果累计购物不超过50元,则在两家商场购物花费是一样的;
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物花费小?
(3)什么情况下,在两家商场购物花费相同?
上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。
总结归纳:
通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便。由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。
布置作业:
教科书第126页习题9.2第1题(1)(2)第3题1、2。
一元一次不等式课件 篇7
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系.
掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.
寻找实际问题中的不等关系,建立数学模型.
1. 不等式的基本性质有哪些?
(1)3x3.
.二、夏耘:
例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、秋收:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);
(2)当学生数是多少时,两家旅行社的收费一样?
(3) 就学生数x讨论哪家旅行社更优惠.
2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1) 买一只茶壶送一只茶杯;
(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
3.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0.40元;乙种收费办法是,不交月租费,每通一次电话收费0.60元.问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?
四、冬藏(补充练习):
1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.
2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.
一元一次不等式课件 篇8
初 中 数 学
§ 一元一次不等式组 教学设计
一、教材分析:
本节课主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的关键,教材通过一个实例入手,引导要解决的问题必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式,一元一次不等式的解集,解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组的概念。学习不等式组时可以类比方程组;求不等式组的解集时,利用数轴很直观快捷,注重数形结合。
二、教学/学习目标:
(一)知识与技能
1.通过由学生动手操作:用各种不同长度的木棒去拼三角形,归纳出能拼出三角形的各边长之间的关系和不能拼成三角形的三边的特征,?目的是归纳出同时符合几不同条件的不等式的公共范围,即不等式组的解集.2.通过确定不等式组的解集与确定方程组的解集进行比较,?抽象出这二者中的异同,由此理解不等式组的公共解集.(二)过程与方法
通过由一元一次不等式,一元一次不等式的解集、?解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组这些概念,?发展学生的类比推理能力.(三)情感态度与价值观
敢于面对数学活动中的困难,并有独立克服困难勇气和运用知识解决问题的成功体验,有学好数学的自信心;认识到数学是解决实际问题和进行交流的重要工具,通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满着探索性和创造性;在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。
三、学情分析
不等式的解集已经在前一节中学习并运用其解决实际问题,?若由多个不等式构成的不等式组的解集如何确定呢?不等式的解集可类比方程的解进行求解,是否不等式组的解与方程组的解也类似呢?因此学生就会进行类比,进而可得出其解集的公共部分.四、教学重点;一元一次不等式组的解法。
五、教学难点;在数轴上找公共部分,确定不等式组的解集。
六、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者。本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超
越,尊重学生的个人感受和独特见解;通过恰当的教学方式引导学生学会自我调适,自我选择。
学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。当学生迷路的时候,教师引导他怎样去辨明方向;当学生遇到挫折畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。
六、教学媒体:多媒体、投影仪。
七、教学过程:
(一)提出问题,引发讨论
问题:现有两根木条 a和b,a长10cm, b长3cm.如果再找一根木条,用这三根木条钉成一个三角形木框,那么对第三根木条的长度有何要求?
学生讨论。
讨论结果:设第三根木条长度为xcm,则由“三角形两边之和大于第三边”得x10-3 第三根木条长度xcm同时满足以上两个不等式,而实际生活中一个量需要同时满足几个不等式的例子还很多。如何解决这样的问题呢?这节课我们来探究这一类问题问题的解决方法。
设计说明:
1、实例引入,激发学生兴趣和参与欲。
2、复习三角形的三边关系。
3、x应同时满足两个不等关系的要求,为学习不
等式组的解集作铺垫。
(二)师生互动,探索新知
1.类比方程组,方程组的解的概念得出一元一次不等式组,一元一次不等式解集的概念。
学生总结,教师补充得出得出上一次不等等式组的概念。类比方程组的概念,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集,解不等式组就是求它的解集.学生画数轴表示不等式组解集7<x<13。
设计说明:类比方程组,方程组的解的概念得出一元一次不等式组,一元一次不等式解集的概念。利用数轴求不等式组的解集,直观快捷。
2.例题讲解:
例:解下列不等式组,并把解集在数轴上表示出来.??2x?1??11?3x?15?0(1)?(2)? ?3x?17x?2?8x?1?x???2(3)??2x?2?4?1?2x?4?x(4)?
?3x?4?3?3x?1?5 由四名学生演板,其它学生在下面练习,最后师生共同规范订正。
解:(1)由①得x>5,由②得x>-2,在数轴上表示为如图.-2-
它们的公共部分为x>5,故不等式组的解集为x>5.(2)由不等式①得x
它们的公共部分为1≤x
它们没有公共部分,故此不等式组无解.(4)由不等式①得x
它们的公共部分是x
由上述四例可发现不等式组的解集有四种情况: 若a>b:①当?②当?③当??x?a时,?则不等式的公共解集为x>a;x?b??x?a时,不等式的公共解集为b设计说明;在学生对借助数轴求不等式组解集具备一定的感性积累的基础上,设置这类问题,培养学生抽象思维能力和总结概括能力。
(三)巩固训练,熟练技能
小组竞赛,四人一组,看哪一组做得又对又快。
练习:解下列不等式组: ?2x?5?3(x?2)?2x?7?3(1?x)?(1)?x?1x(2)?2 ?4?x?3?1?x??33?2?3?5x?3?8x?2(3)??x?12x?3
??3?2 试确定以下不等式组的解集:
?2(x?6)?3?x(1)求不等式组??2x?15x?1的整数解.??1?32???x?y?0?2x?5?3x?4?x?5?0?(2)解不等式组?4(3x?1)?5(2x?1)(3)? ?x?3?0?1?xx?????x?1?02?3设计说明:充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。(四)归纳总结,知识回顾
1.你是如何确定不等式组的解集的? 2.方程组的解与不等式组的解有什么异同? 3.在数轴上如何表示不等式组的解集?谈谈要注意的问题。
七、课后反思
本节课的设计,以实际问题建立数学模型,通过数学问题引导学生找出解决问题的方法。
一元一次不等式组的解法是本节课的重点,借助数轴表示不等式组的解集,这种方式直观形象,更于理解。通过老师设置题目师生共同探讨总结,培养学生抽象思维能力和总结概括能力。
教案设计者:蕲春县檀林中学 方泽周 联系电话:0713- 电子邮箱:fangyuting001@
整式的课件(范本6篇)
编辑特别为您精选的“整式的课件”一定能够让您满意。教学过程中教案课件是基本部分,每天老师都需要写自己的教案课件。教案是教师教学的有效手段。希望这篇文章能够为您解决实际问题并提升自己的能力!
整式的课件【篇1】
一. 预习提问
1. 括号外的因数是正数怎样去括号?
2. 括号外的因数是负数怎样去括号?
二. 教案
1. 学习目标:
1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。
2)能正确且较为熟练地运用去括号法则化简代数式
2. 能力目标:
1)培养学生的观察、分析、归纳能力。
2)锻炼学生的语言概括能力和表达能力。
3)培养学生的知识分解、知识整合能力。
3. 情感目标:
1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
2)通过学生间的相互交流、沟通,培养他们的协作意识。
4.重点:去括号法则及其运用。
难点:括号前面是号,去括号时,应如何处理。
5.教学过程:
(1) 回顾旧知,承前启后
1.什么叫做同类项?
2.叙述合并同类项的法则
3.若a、b、c均为有理数,请指出以下代数式中的同类项及其系数,并进行合并。
整式的课件【篇2】
三维目标
一、知识与技能
能根据题意列出式子:会进行整式加减运算,并能说明其中的算理。
二、过程与方法
经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力。
三、情感态度与价值观
培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值。
教学重、难点与关键
1.重点:列式表示实际问题中的数量关系,会进行整式加减运算。
2.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号。
3.关键:明确问题中的数量关系,熟练掌握去括号规律。
教具准备:投影仪。
四、教学过程 引入新课
1.多项式中具有什么特点的项可以合并,怎样合并?
2.如何去括号,它的依据是什么?
五、新授
例1.(1)求多项式2x-3y与5x+4y的和。
(2)求多项式8a-7b与4a-5b的差。
例2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?
整式的课件【篇3】
教学目标:
通过类比数的运算律得出同类项的概念,掌握合并同类项法则,会对同类项进行合并,发展类比的数学思想方法。
教学重点:
合并 同类项的法则及应用。
教学难点:
正确判断同类项,并同类项。
教学过程:
一、情境诱导
前面我们已经学习了整式,这节课我们运用所学来看本章引言中的这个实际问题:
在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?
得到:100t+120×2.1t 即:100t+252t
对于100t+252t怎么计算呢?相信通过今天的学习,这个问题会迎刃而解。今天要学习的内容是,板书课题:2.2整式的加减(一)
二、探究指导
(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。教师提示:能独立完成的请独立完成,不能的请和小组内同学讨论或向老师请求帮助。)
请同学们自学课本P62-P63练习前的内容,并完成以下几个问题:
1、运用简便方法计算下面两题(只写过程,不写结果):
100×2+252×2==
100×(-2)+252×(-2)= =
观察两个式子的左边结构有什么特点?运用了什么运算律,语言叙述你的运算律。
根据这一特点完成下面式子:
100t+252t= =
2、填空:
(1)100t-252t=( )t
(2)3x2+2x2=( ) x2
(3)3ab2-4ab2=( )ab2
上述各等式左边多项式的项有什么共同特点?上述多项式的运算有什么共同特点?你能从中得出什么规律?语言叙述你的结论,并用符号语言表示出来。
3、根据你的猜想,说出同类项及合并同类项的概念。举出两个例子。
4、说一说怎么合并同类项?
三、展示归纳
1、抽有问题的学生汇报,学生说教师板书。
2.发动学生进行评价、补充、完善,学生说老师改写,最后揭示性质。
3.教师画龙点睛强调
四、变式练习
(先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,要充分暴露问题生成课堂资源。第1、2、3小题学生口答结果,说出怎么想的。第3题再请学生汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。)
1、下列各组是同类项的是()
A 2x3与3x2 B 12ax与8bx C x4与a4 Dπ与-3
2、–xmy与45ynx3是同类项,则m=_______,n=______。
3、下列各题计算的结果对不对?如果不对,指出错在哪里?
(1)3a+2b=5ab (2)5y2-2y2=3
(3)2ab-2ba=0 (4)3x2y-5xy2=-2x2y
4、计算:
课本P65练习1.
五、课堂小结
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调)
六、作业布置
课本习题2.2第1、5、6题。
(修改稿)教学过程:
一、情境诱导
前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:
在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?(请列出算式)
得到:100t+120×2.1t即:100t+252t
对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)
二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。)
探究提纲:
1.填空:
(1)2t+52t=()t
(2)3x2+2x2=( ) x2
(3)3ab2-5ab2=( )ab2
(4)4xy+6xy=
2. 如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?
3. 仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳
1、抽有问题的学生逐题汇报,学生说教师板书。
2.发动学生进行评价、补充、完善,学生说老师改写,
3.教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。)
1.说出两组同类项
2.下列各组是同类项的是()
A 2x3与3x2 B 12ax与8bx C x4与a4 Dπ与-3
3.下列各题计算的结果对不对?如果不对,指出错在哪里?
(1)3a+2b=5ab (2)5y2-2y2=3
(3)2ab-2ba=0 (4)3x2y-5xy2=-2x2y
4.–xmy与45 x3yn是同类项,则m=_______,n=______。
5.计算:
课本P65练习1.
6. 课本习题2.2第1
五、课堂小结
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调)
六、作业布置
课本习题2.2第5、6题。
整式的课件【篇4】
教学目标
1.知识与技能:掌握去括号法则,运用法则,能按要求正确去括号.
2.过程与方法:通过去括号法则的推导,培养学生观察能力和归纳能力;通过去括号法则的应用,培养学生全方位考虑问题的能力.
3.情感态度与价值观:让学生体验在数学学习活动中充满了探索与创造,在探索中学会与人合作、交流,在探索中体验成功的快乐.
教学重点
本节课的重点是去括号法则及其应用.
教学难点
点是括号前面是“—”号,去括号时括号内各项要变号的理解及应用.
教学准备
多媒体课件
教学过程
一.创设情景,激活思维
1.根据题意,列代数式
① 周三下午,校阅览室内起初有a 名同学.后来某班级组织同学阅读,第一批来了b 位同学,第二批来了c 位同学.则阅览室内共有多少同学?你能用两个代数式表示吗?
② 若阅览室内原有 a名同学,后来有些同学因上课要离开,第一批走了b 位同学,第二批走了c 位同学.试用两种方式写出阅览室内还剩下的同学数.
(点评:选取了学生熟悉的教学资源为背景,提出问题,引入新课,调动学生的学习积极性.)
二.积极探索,活跃思维
1.观察上面①中的两个代数式,它们的运算顺序一样吗?结果一样吗?②中的两个代数式呢?试用数学语言表示你的发现.
2.请同学们思考一下,你周围还有没有与问题①和②相仿的问题,把它提出来.(点评:在得出a+(b+c) =a+b+c和 a-(b+c) =a-b-c后,并不是按惯例马上就引导推出去括号的法则,而是继续让学生提出类似的问题,让学生参与进来,感受并理解去括号法则.)
例如本章引言中的问题:
(1)+120(t-0.5)=+120t-60
(2)-120(t-0.5)=-120t+60
3.再请大家观察 a+(b+c) =a+b+c和a-(b+c) =a-b-c 这两个式子,它们有什么特点?
4.由上面的分析探索,体会应该如何去括号?试用文字语言表达你的结论.
(点评:通过让学生自主探究,体验新知的产生过程,由感性认识上升到理性认识.)
概括:去括号法则:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
三.典型例题,知识迁移
例题1
(1)a+(b-c) (2)a-(b-c)
(3)a+(-b-c) (4)a-(-b-c)
(点评:应用新知,解决问题,突出学生自主学习.)
例题2.化简下列各式:
(1)8a+2b+(5a-b);??
(2)(5a-3b)-3(a2 -2b).
(点评:应用新知——去括号,同时复习旧知——合并同类项,在解决问题的过程中为后面“整式的加减”埋下伏笔.突出学生自主学习.)
例题3两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
注意:顺水速度=静水速度+水速
逆水速度=静水速度-水速
解:(1)2小时后两船相距:
2(50+a)+2(50-a)=100+2a+100-2a=(千米
(2)2小时后甲船比乙船多航行
2(50+a)-2(50-a)=100+2a-100+2a=4a(千米)
四.巩固提高,体验成功
练习:课本67页1,2
五.课堂
今天你有哪些收获?
六.作业设计
课本第70页 1、 2.2 3,4,5?? 2、选做课本70页 2.2? 7,8
课后反思
去括号这节内容,看似容易,实际上是学生最易出错的地方.整式的加减与有理数运算中,学生最容易搞错的地方就是括号和符号.在去括号这节内容的教学中,教师决不能疏忽大意.
整式的课件【篇5】
一、知识与技能
(1)了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项。
(2)能先合并同类项化简后求值。
二、过程与方法
经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
三、情感态度与价值观
掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用。
教学重、难点与关键
1.重点:掌握合并同类项法则,熟练地合并同类项。
2.难点:多字母同类项的合并。
3.关键:正确理解同类项概念和合并同类项法则。
教具准备
投影仪。
四、 教学过程,新课引入
有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?
我们来看本章引言中的问题(2)。
在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+1202.1t,即100t+252t
1.类比数的运算,我们应如何化简式子100t+252t呢?
五、新授
(1)运用有理数的运算律计算:
1002+2522=______;
100(-2)+252(-2)=________.
1002+2522=(100+252)2=3522
100(-2)+252(-2)=(100+252)(-2)=352(-2)
我们知道字母可以表示数,如果用t表示上述算术中的数2(或-2)就有,100t+252t=(100+252)t=352t.
整式的课件【篇6】
一、教学目标
知识与技能
1、掌握合并同类项的法则,能进行同类项的合并。
2、会利用合并同类项将整式化简。
过程与方法
通过类比数的运算律得出合并同类项的法则,在教学中渗透“类比”的数学思想。
情感态度与价值观
1、通过参与合并同类项法则的探究活动,提高学习数学的兴趣。
2、培养学生合作交流的意识和探索精神。
二、重点难点
重点
合并同类项法则。
难点
合并同类项法则的应用。
三、学情分析
学生在上一节学习了同类项的概念,这为本节学习奠定了一定的基础,但合并同类项牵扯到抽象的字母,学生难于把握,因此一定要搞清楚字母与数的关系。
四、教学过程设计
问题设计师生活动备注
情景创设
问题1:青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度可以达到100千米/时,在非冻土地段的行驶速度可以达到120米/时,请根据这些数据回答下列问题:
学生思考并回答:
100+252
在具体情境中用整式表示问题中的数量关系,利用实际问题吸引学生的注意力。
在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的倍,如果通过冻土地段需要小时,你能用含的式子表示这段铁路的全长吗?
问题2:式子100+252能化简吗?依据是什么?
提出问题2,让学生带着这个问题来解决探究1、
[学生]独立完成探究1中的(1),并对(2)进行分组讨论、
[师]巡视,对能化简出结果的小组,请他们说出化简的理由及依据、对不能化简出的小组应加以引导,参与到他们的讨论中、
在探究1的基础上,以原有的关于数的运算律的知识,开展探究2、
观察多项式中各项的特点,得出合并同类项的概念、
合并同类项:把多项式中的同类项合并成一项、
类比数的运算,探究得出合并同类项的法则、
法则:所得项的系数是合并前各同类项系数的和,字母部分不变、合并同类项以及整式的加减是建立在单项式、多项式的相关概念的基础上,因此在学习新知识之前对前面的知识有必要进行简单的回顾、
通过对探究1和探究2的探讨,引出同类项的概念、合并同类项概念、
问题2是本节内容的核心,让学生在探究的过程中体会用字母表示数的意义,培养学生的抽象概括能力,在小组合作中体会交流的重要性和必要性。
注意:
1、学生在活动中是否参与到讨论中
2、学生对概念的理解和掌握情况以及对合并同类项法则的总结情况
3、学生表述情况是否有条理,是否清晰请点击下载Word版完整试题:新人教版七年级数学上册《2.2整式的加减(第2课时)》