趣祝福logo
地图 > 祝福语 > 范文大全 > 代数式课件 >

列代数式课件9篇

列代数式课件9篇

趣祝福范文大全(编辑 梦幻舞者)为了教学更有顺利,老师会需要提前准备教案课件,需要老师把每份课件都要设计更完善。教案是教师教学效果的提升保证。我为了达到绝佳体验制作了这份令人满意的“列代数式课件”,感恩光临愿您从中获取所需!

列代数式课件 篇1

一、教材分析

1.教材分析

我选取的是浙教版七上实验教材第四章第二节,课题为《代数式》,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式.从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始.同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义.据此,我确定本节课的教学重点为:代数式的概念及用代数式表示常用的数量关系.

2.学情分析

在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:用代数式表示实际问题中的数量关系.

二、教学目标

根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的.

过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展.

三、教法与学法

根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点.

在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”.

四、课堂结构设计

根据问题解决的一般过程,我把这节课的课堂结构设计为以下5个环节,下面对教学过程设计作详细的说明.

五、教学过程设计

1.创设情境,引出问题

我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题.

如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育.同时,旅程的开始也就意味着学习的开始.

在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:

首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中.到了纪念馆门口,自然遇到了买门票问题.

此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义.

进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决.如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性.教学时应引导学生正确书写,指出书写的简约美.

接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式:略,提出问题:它们与我们以前学过的算式有什么区别呢?

使学生造成认知上的冲突,激发其探究的内驱力.

2.对比析误,感知问题

从而水到渠成地得到概念.教师在板书概念后点出课题.

此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性.

至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理.而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索.首先是列:

3.双向建构,探索问题

(1).大家一起来列式:

列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序.教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验.我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流.

(2).聪明才智共编式

如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点.估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心.可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台.由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的.此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮.

为乘机促使思维进一步发展,让学生跳一跳能摘到桃子,我设计了如下的探究活动.

4.合作交流,解决问题

(1).开动脑筋齐探索

请学生以小组为单位,选取下列的1个主题,先自主探索,再在组内交流.然后通过视频展示台展示研究成果.

主题1是为了培养学生动手操作和规律探索能力,渗透特殊到一般的思想而设置的.估计学生对此题会有不同的解决方法,从而得到不同的代数式,教师要细心聆听学生的讲解,充分肯定小组合作的成果,并点明这些代数式最后都可化为同一形式,为后续内容学习埋下伏笔.

主题2是为了让学生感受数学美,渗透数学人文和数形结合思想,并为勾股定理等后续内容的学习打下基础.

在此把研究性学习引入课堂,是为了给学生思考、探究、发现和创新提供最大的空间.同时通过展示研究成果,师生共同从语言表达、动手操作、参与合作等方面进行评价,使同学们在多元评价中感受自主探究的乐趣.预计这里又能达到一个高潮.

(2)游戏之中验真知

经过前面的两次高潮,估计学生的思维已有些疲劳,根据注意的转移规律,借鉴中央台的非常6+1栏目,我设计了游戏活动-砸金蛋.8个金蛋内设计了5个题目和3朵彩花,其中问题的顺序已作了充分的预设,不管怎么砸,问题都按照先简后难的固定顺序出现,从而使高层次的问题在思维最活跃时得到解决.

此游戏的开展,吸引了学生的有意注意,舒缓了疲劳,起到了课堂调节剂的作用,使学生在愉快活跃的氛围中主动参与知识的巩固、深化过程,仿佛学中玩,玩中学.最后一题的情境设计突出了参观主线,并暗示参观已结束,进入返程.而在乘车返校途中,又自然而然地引出了实际问题:

(3)返程路上解疑问

如此设计,使问题与情境相融,做到首尾呼应,参观情节贯穿整节课.在讲解时可引导学生在观察动画演示的基础上先独自解决,后请学生代表作分析,以暴露思维过程,教师应及时进行鼓励和评价,使学生在问题解决的过程中体会成功的喜悦.其中拓展问题的设计为下节课的学习作了铺垫.

5.反思小结,拓展问题

(1).你说我讲共交流

小结由师生互动完成,我引导学生从以上几方面进行交流.前三方面对应了本节课的三维目标,第四方面的设计能促使学生进行全面反思,使课堂得到延升.

(2).课后延伸促提高

作业分为阅读作业、书面作业和拓展作业,其中根据学生的发展情况,书面作业又分为必做题和选做题,如此设计的目的,是为了使不同的人在数学上得到不同的发展.

板书预设如下,最后从预设和生成两个方面对本案设计作补充说明.

六、设计说明

1.预设

(1).教学特色:本节课的设计是以问题为主线,以“参观”为形式,参观情境贯穿整节课,而实质是数学本质的渗透,抽象的数学学习与有趣的参观情境有机相融,让学生在这个特殊的"旅程"中感受地方人文,体念学习过程,体会思想方法,突出了数学学习的生活化,使学生真正成为课堂的主角.

(2).重、难点的处理:

突出重点措施:

①.通过列式——比较——辨别——概括等环节,让学生经历代数式概念的产生过程,

②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.

突破难点策略:

①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.

②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.

2.生成

预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.

列代数式课件 篇2

作为从事数学教育的人,让更多的学生掌握扎实的基础知识与具备较高的数学思维水平与解题能力是每个老师的共同愿望,如何在短时间内达到这一目的是许多老师非常关注的问题。我对初三数学总复习有如下做法:

好的复习计划,对指导师生进行系统复习,具有明显的导向作用,初三数学复习计划的制定应注意:

1.钻研教材,确定复习重点。确定复习重点可从以下几方面考虑:⑴.根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。这是确定复习重点的依据和标准。⑵.熟识每一个知识点在初中数学教材中的地位、作用;⑶.熟悉近年来中考试题类型,以及考试改革的情况。

2.了解学生的知识状况。一是对平时教学中掌握的情况进行定性分析;二是进行摸底测试。

3.制定复习计划。根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。复习计划主要内容应包括系统复习安排和综合复习安排,系统复习初中的每一章节内容,要计划好复习时间、复习重点、基本复习方法;计划好如何挖掘教材,使知识系统化;训练哪些方法培养哪些能力、掌握哪些数学思想等。综合复习应设计如何引导学生对初中数学完成由厚到薄的转变;如何培养学生综合应用知识解决问题的能力;安排如何引导学生对各种数学方法进行训练,使知识系统化、熟练化,形成技能技巧,促进数学能力的提高,使学生形成知识体系。

初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。如何进行基础知识的复习呢?我认为:一是要紧扣教材,依据教材的要求,不断提高,注重基础。二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在系统复习中教师要从引导学生弄清知识的结构入手,由结构找性质,由性质找方法,则熟练掌握方法到形成能力。在每一个章节复习中,为了有效地使学生弄清知识的结构,宜先用一定的时间让学生按照自己的实际查漏补缺,有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上。复习中教师应在学生中巡回辅导,了解信息,及时反馈,然后再引导学生对本章节知识进行系统归类,弄清内部结构,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高,此阶段切忌求快、求深、求难。否则中差生是达不到合格水平的。复习时还注意到知识的纵横联系,将各部分知识串在一起,弄清它们之间的共同性和区别,弄清它们的联系,可使对知识的学习深入一步。因此,复习时除按课本章节顺序进行外,还可将知识按另外的方式进行归类总结。

例题与习题的选用应从学生的实际出发。因此在复习中根据教学的目的、教学重的点和学生实际,要注意引导学生对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。目前,“题海战术” 的普遍现象还存在,学生整天忙于解题,没有时间总结解题规律和方法,这样既增重学生负担,又不能使学生熟练掌握知识灵活运用知识。事实上,许多复习题目是从同一道题中演变过来的,其思维方式和所运用的知识完全相同。如果不掌握它们之间的内在联系,就题论题,那么遇上形式稍为变化的题,便束手无策,教师在讲解中,应该引导学生对有代表性的问题进行灵活变换,使之触类旁通,培养学生的应变能力,提高学生的技能技巧,挖掘教材中的例题、习题功能,可从以下几方面入手:⑴.寻找其它解法;⑵.改变题目形式;⑶.题目的条件和结论互换;⑷.改变题目的条件;⑸.把结论进一步推广与引伸;⑹.串联不同的问题;⑺.类比编题等。

四、注重各种数学思想与数学方法的训练,提高学生的数学素质。

初中数学中已经出现和运用了不少数学思想和方法。如转化的思想是一种重要的思想方法,应通过不同的形式给以训练,使学生熟练掌握,致于分析、综合、归纳等的重要数学思想方法,也让学生有所了解。

初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。这些方法要按要求灵活运用。因此复习中针对要求,分层训练。

对学生进行数学思想方法和训练可采用以下方法:

1.采取不同训练形式。一方面应经常改变题型:填空题、判断题、选择题、简答题、证明题等交换使用,使学生认识到,虽然题变了,但解答题目的本质方法未变,增强学生训练的兴趣,另一方面改变题目的结构,如变更问题,改变条件等。

2.适当进行题组训练。用一定时间对一方法进行专题训练,能使这一方法得到强化,学生印象深,掌握快、牢。

相信在复习过程中,认真抓好每一个环节,最后必定会取得自己满意的好效果,好成绩!

列代数式课件 篇3

小学数学与代数教学设计

解决实际问题的公式教学中如何引导学生分析量的等式关系

教学目的:

1.在求解实际问题的过程中,了解和掌握ax+b=c、ax-b=c形式的方程组的求解方法,并列出上述方程组求解两步计算的实际问题。

2.在观察、分析、抽象、概括和交流的过程中,体验将现实问题抽象成方程的过程,进一步体会方程的思维方式和价值。

3.在积极参与数学活动的过程中,养成独立思考、积极与他人合作交流、自觉测试等习惯。

教学难点:让学生经历在实际问题中求量间相等关系和用平行方程求解问题的过程,理解和掌握相关方程的求解方法,加深用平行方程解决实际问题的经验。

教学对策:在理解题意的基础上,组织学生充分交流定量关系分析,对有困难的学生及时辅导。教学准备:教学光盘或幻灯片

教学过程:

1.回顾铺垫

1.根据条件陈述数量之间的等价关系。

红色花朵的数量是黄色花朵的3倍;梨比苹果多4个;红花比黄花少4朵;梨的数量比黄花少4倍,比苹果多2倍。指定学生口头回答,教师及时评价。

2.根据方程的性质,在圆圈内填入运算符号,在方框内填入数字。

(1) x+20=45 (2) x÷5=40 X+20-20=45○□ x÷5○□=40○□

< p> 当学生回答时,他们被要求解释方程的性质是基于什么的。 2. 教学实例1唐少智

列代数式课件 篇4

教学目标:

1. 使学生复习巩固有理数、实数的有关概念.

2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

教学重难点:

1. 有理数、无理数、实数、非负数概念;

2.相反数、倒数、数的绝对值概念;

3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。

(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),

实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,

实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).

从数轴上看,互为相反数的两个数所对应的点关于原点对称.

实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.

列代数式课件 篇5

《代数式》是浙教版七上实验教材第四章第二节课程,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。

在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。

根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平确定的。

过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。

教学重点:代数式的概念及用代数式表示常用的数量关系。

根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的.情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。

在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”,

我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题。

如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育。同时,旅程的开始也就意味着学习的开始。

在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:

首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中。到了纪念馆门口,自然遇到了买门票问题。

此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义。

进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决。如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性。教学时应引导学生正确书写,指出书写的简约美。

接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式 ,提出问题:它们与我们以前学过的算式有什么区别呢?

使学生造成认知上的冲突,激发其探究的内驱力。

从而水到渠成地得到概念. 教师在板书概念后点出课题。

此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性。

至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理。而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索。

(1)大家一起来列式:

列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序。教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验。我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流。

如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点。估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心。可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台。由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的。此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮。

列代数式课件 篇6

第一章实数与中考

1.正确理解实数的有关概念;

2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;

3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。

5.会用多种方法进行实数的大小比较。

中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。

牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。

大纲要求:

1.使学生复习巩固有理数、实数的有关概念.

2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:

1.有理数、无理数、实数、非负数概念;

2.相反数、倒数、数的绝对值概念;

3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。

(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数,

实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).

从数轴上看,互为相反数的两个数所对应的点关于原点对称.

实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.

例1①a的相反数是-,则a的倒数是_.

③(泉州市)去年泉州市林业用地面积约为1000亩,用科学记数法表示为约_.

【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.

例2.(-2)3与-23.

例3.-的绝对值是;-3的倒数是;的平方根是.

分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。

例4.下列各组数中,互为相反数的是()D A.-3与B.|-3|与一C.|-3|与D.-3与

例1下列实数、sin60°、、()0、3.14159、-、(-)-2、中无理数有()个

【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.

列代数式课件 篇7

有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。

整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。

没有加减运算的整式叫做单项式。

单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。

不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。

对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。

同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。

我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。

我们把有理式与根式统称代数式,把根式以外的无理式叫做超越式。

列代数式课件 篇8

从生活出发的教学让学生感受到学习的快乐 在“代数式”这节课中,由数青蛙引入,带领学生一起探究得出规律,由此引出代数式的概念。在举例时,指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?”学生们开始活跃起来,一位学生举起了手,“一本书p元,6p可以表示6本书价值多少钱”,受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到“人人学有用的数学”的新理念,正如我们所说的,“代数式在生活中”。然后,着重讲解列代数式,按和,差,积,商,倍,分,半等运算,先出现先列时等原则,分清是先平方,还是先求和差。通过典型问题的讲解与练习,学生掌握的不错。

不足和今后在教学中应注意

1.营造有利于新课程实施的环境氛围。

2.注重新型师生关系的建立,在处理好学生、教师、教材三者的关系上多下功夫,力求建立更为和谐融洽的师生关系,有良好的课堂教学气氛,以取得良好的课堂教学效果。

3.进一步学习新课程改革的教育教学理论,在教师角色转变上多做工作,增强自己是学生学习的促进者、教育教学的研究者、课程的建设者和开发者,向开放型的教师迈进。

4.努力提高自己的业务能力,特别是驾驭堂的能力和教材的能力。探索适合我校学生特点和自己特点的课堂教学模式。

5.不断学习和提高现代化教学技术,提高多媒体课件制作能力,能制作出针对性、实效性强的多媒体教学课件,使之更好地辅助教学,提高课堂教学效率、课堂教学质量。

另外,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。

列代数式课件 篇9

数学 是数字与图形结合的一门学科,有效地学习数学,不仅能提高数学成绩,而且能扩散思维,增强分析问题的能力和逻辑思维能力,从而带动其他学科成绩快速提升,对人的一生也是受益匪浅的。

数学思维导图是建立在中小学数学学习方法和思维导图应用的基础上,由北京龙途教育率先研发并推广到数学教学与学习中的一种数学学习工具。

龙途教育教研团队经过 长达三年时间研发、实践和不断修正,结合全国数十名知名高级教师多年教学实践经验、多省市状元的学习方法和中小学学生心理及生理特点,根据中高考数学历年考试特点和学生接受知识能力特点,利用人类对图形的记忆理解能力远远高于对文字的记忆理解能力这一特点,精心编制了“小学数学思维导图学习卡片”、“中考数学思维导图”和“高考数学思维导图”等,将中高考考点溶于图像之中。由龙途教育思维导图绘制团队亲自带队并精彩讲授,同学们可瞬间掌握并能现场画出知识层次、知识清单、解题方法、中高考考点等,解决了同学们记公式难和不知道学习目标盲目备考的问题。

数学思维导图的研发和使用,正是吻合了数学本身的特点和数学对学习者的作用。数学思维导图由颜色、线条、图形、联想和想象五要素组成,如下图:

它能够:

1,增强使用者充分利用右脑超强记忆的能力;

2,增强使用者的立体思维能力(思维的层次性与联想性);

3,增强使用者的总体规划能力;

4,增强使用者分析和解决问题的能力;

5,帮助教师更好地备课和授课;

6,提升中考生短期复习和冲刺的效率等。

编辑推荐

代数式课件


经过周到的分析编辑为您撰写了“代数式课件”。新入职的老师需要备好上课会用到的教案课件,每位老师都应该他细设计教案课件。编写好教案需要教师有较为广泛的背景知识和教学经验。这将使你更加成功!

代数式课件【篇1】

1.了解用字母表示数的意义,了解用字母表示数是代数的一个特点,是数学的一大进步。

2.了解代数式的概念,能说出一个代数式所表示的数量关系。

3.通过用字母表示数,学生学会抽象概括的思维方法。

4.通过实例,学生从中领悟到数学来源于实践,又反过来作用于实践的辩证原理。

5.通过用字母表示数,反映出数学中从特殊到一般的辩证关系,从而使学生受到初步的辩证观点的教育。

师:中学数学课是从代数开始的,在代数课上都学习些什么呢?初中代数和小学数学有什么关系呢?请同学们看小黑板

【教法说明】图片展示联系实际易激发初一学生兴趣,使学生养成自己发现问题、解决问题的创造性思维习惯.

学生活动:先独立思考,再与同伴交流,互相讨论后一一回答问题.

教师活动:巡视查看,叫学生回答并正确评价,然后师生共同归纳:

【教法说明】由学生熟知的例子引出字母表示数学生易接受.由特殊到一般,也体现用字母表示数简明、普遍的优越性.注意①三个问题不要连续给出,要让学生个个击破,让学生有成功感,③向学生指明用字母表示数体现了数学中的简洁美,对称美,数学美.

师:你还学过哪些用字母表示数的运算律?能写出来吗?

学生活动:一个学生板演,其他学生写在练习本上(加法结合律、乘法结合律、分配律)

【教法说明】通过亲自动手尝试,进一步理解用字母表示数的.实际意义.

小结:(1)这些运算律中的字母可表示任何一个数;(2)用字母表示数能简明地揭示一般规律.

师:除运算律能用字母表示外,还有许多同学们熟悉的实例,请看:(出示投影2)

1.如果用s表示路程(单位:km),t表示时间(单位:h),v表示速度阵位:km/h),那么有v=__________.

2.一个正方形的边长为a cm(厘米),这个正方形的周长是多少?面积是多少?用L表示周长(单位:cm),则L=_________,用S表示面积(单位:cm2),则S=_____________。

教师活动:(1)常用的长度单位在小学大多用汉字表示,初中开始用字母表示:米(m),厘米(cm),毫米(mm),千米(km),相应的面积、体积单位则是平方米(m2),立方米(m3)等.(2)单位不能遗漏 。(3)尽可能化成最简形式

【教法说明】通过练习使学生亲自体会用字母表示数的广泛性,为今后正确使用奠定基础.

师:从以上各例可以看出,用字母表示数,可以把数或数量关系简明地表示出来,且具有一般性,因此,在公式与方程中都用字母表示数,这给运算带来了很大方便.今天的探索就到这里,刚才同学们表现都很出色,希望再接再励!

1.一个三角形的底边为a m,这边上的高为h m,则这个三角形的面积是多少?用S表示面积(单位:m2),则S=_______;它和什么图形的面积公式相似?

(1)有这样一个游戏:把你的出生年份乘以10000倍,再把你的出生月份乘以100倍,最后把你的出生日份乘以3,全部相加后,所得的和中就能够计算出你的出生日期。不信试一试;

(2)2 x 2 = 2 + 2; 3 +—— = 3 x ——; 4 x —— = 4 + —— ; 5 x—— =5 +——,。。。

(3) 3x3—1x1=8, 5x5—3x3=16,9x9—7x7=32, 15x15—13x13=56,。。。

3.—— + —— =——,—— + —— =——,—— + —— = ——,—— + —— = ——,。。。

代数式课件【篇2】

教学目标

1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学建议

1.重点和难点:正确地求出。

2.理解:

(1)一个是由代数式中字母的取值而决定的。所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化。因此在谈时,必须指明在什么条件下。如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

3.求的一般步骤:

在的概念中,实际也指明了求的方法。即一是代入,二是计算。求时,一要弄清楚运算符号,二要注意运算顺序。在计算时,要注意按代数式指明的运算进行。

4。求时的注意事项:

(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:

本小节从一个应用代数式的实例出发,引出的概念,进而通过两个例题讲述求的方法。

6.教学建议

(1) 是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。

(2) 列代数式是由特殊到一般, 而求, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。

第 1 2 页

代数式课件【篇3】

这节课,先让学生自己阅读课本,了解相关的概念,然后完成自学检测,教师进行适当点评后,学生完成分层练习,巩固对概念的掌握。整一节课基本是以学生自学为主线,完成整个教学过程。意在培养学生的自学能力。如果学生可以养成自己阅读课本,在相应的教材内容中获得自己所需的知识,学生的自学能力会得到很好的锻炼。

但从课堂的实施情况中可以看到,虽然这个教学班的学生基础比较好,起点比较高,但是整个学习过程并不是一帆风顺,可以说学生是在磕磕碰碰中完成了学习任务。几个本来并不难理解的知识点,比如“多项式的项”、“多项式的排列”,如果学生有一定的数学学习的基础和独立分析问题的能力,应该可以自己顺利完成学习,但事实上,必须由老师不断加以点评、分析,学生才能较准确地把握相关语句的含义,说明学生对数学语言的理解和表达还是存在较大困难。这个让学生阅读课文的习惯必须要进一步培养。

这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握,配以学习卷上的分层练习,学生的双基训练很到位,单纯地从学生接受知识的角度,讲授法应该效果更好。但同时学生的自主学习的习惯和能力也不知不觉地被忽略了。事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约。

代数式课件【篇4】

教学目标 

1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学建议

1.重点和难点:正确地求出。

2.理解:

(1)一个是由代数式中字母的取值而决定的。所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化。因此在谈时,必须指明在什么条件下。如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

3.求的一般步骤:

在的概念中,实际也指明了求的方法。即一是代入,二是计算。求时,一要弄清楚运算符号,二要注意运算顺序。在计算时,要注意按代数式指明的运算进行。

4。求时的注意事项:

(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:

本小节从一个应用代数式的实例出发,引出的概念,进而通过两个例题讲述求的方法。

6.教学建议

(1) 是由代数式里的字母所取的值决定的,因此在教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念。

(2) 列代数式是由特殊到一般, 而求, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。

教学设计示例

(一)

教学目标 

1使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学重点和难点

重点和难点:正确地求出

课堂教学过程 设计

一、从学生原有的认识结构提出问题

1用代数式表示:(投影)

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%

2用语言叙述代数式2n+10的意义

3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

二、师生共同研究的意义

1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做

2结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)是由什么值的确定而确定的?

当教师引导学生说出:“是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

(3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70

注意:如果代数式中省略乘号,代入后需添上乘号

例2  根据下面a,b的值,求代数式a2- 的值

(1)a=4,b=12,(2)a=1 ,b=1

解:(1)当a=4,b=12时,

a2- =42- =16-3=13;

(2)当a=1 ,b=1时,

a2- =- =

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

三、课堂练习

1(1)当x=2时,求代数式x2-1的值;

(2)当x=,y=时,求代数式x(x-y)的值

2当a=,b=时,求下列:

(1)(a+b)2;   (2)(a-b)2

3当x=5,y=3时,求代数式 的值

答案:1.(1)3;  (2) ;  2.(1) ;(2) ; 3. .

四、师生共同小结

首先,请学生回答下面问题:

1本节课学习了哪些内容?

2求应分哪几步?

3在“代入”这一步应注意什么”

其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的。

五、作业

当a=2,b=1,c=3时,求下列:

(1)c-(c-a)(c-b);   (2) .

(二)

教学目标 

1.使学生掌握的概念,会求;

2.培养学生准确地运算能力,并适当地渗透对应的思想。

教学重点和难点

重点:当字母取具体数字时,对应的的求法及正确地书写格式。

难点:正确地求出。

课堂教学过程 设计

一、从学生原有的认识结构提出问题

1.用代数式表示:(投影)

(1)a与b的和的平方;(2) a,b两数的平方和;

(3)a与b的和的50%.

2.用语言叙述代数式2n+10的意义。

3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值。这就是本节课我们将要学习研究的内容。

二、师生共同研究的意义

1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做。

2.结合上述例题,提出如下几个问题:

(1)求代数式2n+10的值,必须给出什么条件?

(2)是由什么值的确定而确定的?

当教师引导学生说出:“是由代数式

里字母的取值的确定而确定的”之后,可用图示帮助

学生加深印象。

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应。

(3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案。(教师板书例题时,应注意格式规范化)

例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值。

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70.

注意:如果代数式中省略乘号,代入后需添上乘号。

解:(1)当a=4,b=12时,

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数。

最后,请学生总结出求代数值的步骤:

①代入数值  ②计算结果

三、课堂练习

1.(1)当x=2时,求代数式x2-1的值;

2.填表:(投影)

(1)(a+b)2;  (2)(a-b)2.

四、师生共同小结

首先,请学生回答下面问题:

1.本节课学习了哪些内容?2.求应分哪几步?

3.在“代入”这一步应注意什么?

其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的。

五、作业

1.当a=2,b=1,c=3时,求下列:

2.填表

3.填表

课堂教学设计说明

由于是由代数式里的字母所取的值决定的,因此在设计教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念。

读书破万卷下笔如有神,以上就是一米范文范文为大家带来的7篇《数学教案-代数式的值》,希望对您的写作有所帮助,更多范文样本、模板格式尽在一米范文范文。

代数式课件【篇5】

下面看几个用字母表示数的例子:

1. 如果甲数为x,乙数为y,那么甲、乙两数的差是多少?

2. 如果长方形的长各宽分别为a和b,那么它的周长和面积各是多少?

长方形的面积是a·b。

3. 如果梯形的上底为a,下底为b,高为h,那么它的面积是多少?

现在我们来分析上面四个公式有哪些共同的特征。

(1)这些式子中,都含有数字或表示数字的字母;(2)它们都是用运算符号连接起来的。

实际上,用运算符号把数或表示数的字母连接而成的式子,就是代数式。

单独的一个数或一个字母,也是代数式,如5,a,m等都是代数式。

说明:

(1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学)。

(2)强调代数式仅指用“运算”符号连接数或字母而得到的算式,代数式中不含有等号或不等号。如S=ab是等式,也可表示长方形面积公式。它不是代数式,而ab是代数式。

练习:举出五个含有加、减、乘、除、乘方运算的代数式(每一个代数式至少含有两种运算)。

(3)代数式里的每个字母都表示数,因此数的一些运算规律也适用于代数式。

例1 指出下列代数式的意义:

(1)2a+5; (2)2(a+5); (3) ;

分析:说出代数式的意义就是要求写出代数式的读法,一个代数式可以有几种读数,写出一种即可。

(2)2(a+5)表示的是a与5的和的2倍.

(3) 表示的是a的平方与b的平方的和.

(4) 表示的是a,b两数和的平方.

(5) 表示的是x的倒数.

注意:解这类问题的关键是:(1)认真分析代数式中含有哪些运算,它们运算顺序是什么,从而正确,简明地体现出代数式的运算顺序,(2)不会引起误解;(3)为了简明地叙述代数式的意义,也可以找出最后的运算,把它用语言表达出来,其它的运算用代数式表示。如(7) 的意义可叙述为a+b与a-b的商,(8)3(x2-y2)可叙述为3与x2-y2的积。

代数式课件【篇6】

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式。如:2, 都是代数式。

(3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号。如 , ,等都是代数式,而 , , , 等都不是代数式。

3.教学难点 分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。如 ,应写作 或写作 , 应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号。

(2)代数式中有除法运算时,一般按照分数的写法来写。如: 应写作

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来。

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过。比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍。

例2是说出一些比较简单的代数式的意义。因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

代数式

教学目标 

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学重点和难点

重点:用字母表示数的意义

难点:学会用字母表示数及正确地说出代数式所表示的数量关系

课堂教学过程 设计

一、从学生原有的认知结构提出问题

1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫代数式。那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容。

三、讲授新课

1代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式。学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2举例说明

例1  填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n;  (2)(t-2);   (3)a3;   (4)(1+10%)m

例2  说出下列代数式的意义:

(1) 2a+3    (2)2(a+3);     (3)   (4)a-   (5)a2+b2   (6)(a+b) 2

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(3) 的意义是c除以ab的商;  (4)a- 的意义是a减去 的差;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3  用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

解:(1) ;   (2)(m-5n)2   (3)2x+y;  (4)3tν3

四、课堂练习

1填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

2说出下列代数式的意义:(投影)

(1)2a-3c;   (2) ;   (3)ab+1;   (4)a2-b2

3用代数式表示:(投影)

(1)x与y的和;  (2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和;  (4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1本节课学习了哪些内容?2用字母表示数的意义是什么?

3什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4a千克大米的售价是6元,1千克大米售多少元?

5圆的半径是R厘米,它的面积是多少?

6用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的 的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

代数式课件【篇7】

1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,

3、多项式:

几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:

(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

4、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.

本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式。

(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“”,把括号和它前面的“”号一起去掉,括号里各项都变号。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“C”号,把括号和它前面的“C”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“C”号,括到括号里的各项都变号。

合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

本题考查图形的变化规律,观察得出“每一行和每一列的个数的关系”是解题的关键。

注意:

(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

代数式课件【篇8】

(1)a于b的差与c的平方的和.

(2)百位数字是a,十位数字是b,个位数字是c的三位数.

(3)用含同一个字母的`代数式表示三个连续的整数,并写出它们的和.

(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).

(3)设m是整数,三个连续整数可表示为m-1,m,m+1,它们的和为(m-1)+m+(m+1),即3m.

注意:(1)在代数式中,字母与数或字母与字母相乘,通常把乘号写作“·”或省略号不写,如2×a写作2·a或2a(但不能写作a2),a×b写作a·b或ab.

(2)代数式中出现除法运算时,一般以分数的形式表示,如s÷t写作 (t≠0)

(三)巩固练习:

1.指出下列各代数式的意义:

(1) +2; (2)a(b+1)-1.

2.用代数式表示:

(1)a,b两数的差与c的积.

(2)x,y两数的和的平方减去它们差的平方.

本节主要学习了代数式的概念,以及代数式的读法和写法,并初步学习用代数式表示简单的数量和数量关系。

学习代数式要特别注意以下几点:

(1) 代数式中含有加、减、承、除、开方、乘方等运算符号,不含有等号或不等号,单独的一个数(或字母)也是代数式。

(2) 代数式与公式不同,公式是等式,但不是代数式,代数式是不含“=”号的。

(3) 代数式的书写要严格遵照其书写规定:

① 代数式中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字要写在字母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×”。

② 在代数式中遇到除法运算时,一般按分数的形式表示。

(4) 代数式的读法没有统一的规定,一般以能够简明的体现出代数式的运算顺序,不致于引起误会为主

代数式课件【篇9】

各位领导老师,下午好!今天我说课的内容是代数式的值。

下面,我将从教材分析、学情分析、教学目标、教法分析、教学过程及说明五个方面对本次课题进行分析。

一、 教材分析:

(一) 教材的地位及作用:

首先,我们来看一下教材的地位及作用。“代数式的值”是浙教版七年级上册4.5节的内容,是初中代数研究的一个重要问题之一。它是学生在学习了用字母表示数之后的后续内容,又可贯穿于初中代数学习的始终。所以,通过这部分内容的学习,可以帮助学生更好的理解代数的核心问题——代数式的概念,也能让学生为将来的函数学习作一个铺垫。

(二) 教学重难点

基于教材的这样一个地位以及作用,那么本堂课的教学重点是求代数式的值的方法,教学难点是理解用字母表示数与求代数式的值的关系。

二、 学情分析

接下来我从知识、能力和情感态度三个方面分析学生的基础、优势和不足。在本堂课之前,学生已经学习了用字母表示数的知识和概念,掌握了会用字母来表示一些实际问题,但是求代数式的值上还会有一定的偏差。但是,学生对数学的学习有相当的兴趣和积极性,愿意与老师、同学进行探讨交流,相信他们一定能在合作交流的意识与数学能力的提高等方面有所发展。

三、 教学目标

在对教材与学生充分了解的基础上,本堂课的教学目标可以分为以下三个:

知识目标:(1)经历具体情境让学生抽象求代数式值的过程,体会用数值代替代数式里的字母,并会求出代数式的值。

(2)通过求代数式的值让学生进一步理解用字母表示数的意义,进一步增强符号感。

(3)通过对实际例题的体验初步了解整体思想

能力目标:通过学习,培养学生分析问题、解决问题、收集处理信息、团结协作的能力。

情感目标:使学生感受从特殊到一般,又从一般到特殊的辨证过程,激发学生学习数学的兴趣,培养学生辨证唯物主义观点。

四、 教法分析

根据以上的分析,本堂课的教学目标实现策略为“三个一”,即创设一个情境;采用一种反馈模式;贯彻一个自主探索的理念。具体来说,本堂课采用引导探究式学习方法,使学生在一个生活情境的引导下,在多媒体课件的辅助下,通过反复技能演练去发现问题,合作探究与独立思考相结合来解决问题的方法。这种教法的设计,不仅重视了知识的结果,更重视知识的发生,发展和解决过程,贯彻新课程的理念。

五、 教学过程

接下来,我将具体讲解教学过程

根据建构主义理论,教学流程分为情境引入——例题讲解,概念建构——技能演练——小结与作业四个环节。

(一)情境引入

首先我们来看情景引入。

在情境引入上,我着重思考的是如何使我们的数学贴近我们的生活,激起同学们学习的兴趣。因此,我挑选了一个同学们感兴趣的话题——身高预测。在课前,我首先让学生了解了父母亲身高的相关信息。在课上,在给出以下一段文字材料后,

“据某报纸报道,一位医生研究得出由父母身高预测子女成年后的身高公式:儿子的身高是父母身高和的一半再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2”

我给出了三个问题:

第一个问题是(1)已知父亲身高是a米,母亲身高是b米,请同学们用代数式表示儿子和女儿的身高

第一个问题的设计,主要是同学们学过的列代数式的知识的一个回顾,同时也让同学初步感受到今天所学的知识是原来知识上的一个深入,学习的台阶就会相对来说低一点。

在解决了第一个问题以后,我给出了第二个问题

(2)七年级女生小红的父亲身高是1.75米,母亲身高是1.62米,七年级男生小良的父亲身高是1.70米,母亲是1.62米,试预测小良和小红成年后的身高

第二个问题的设计,是今天所学的新知识。由于放入了这样一个生活情境,同学们必然会容易得出答案。

那么,在解决了以上两个问题之后,同学们的兴趣进一步提高,必然想对自己的身高预测一下,因为我就设计了第三个问题:请同学们预测自己的身高。

那么,在第三个问题的时候,由于每个学生父母亲身高的差异性,那么教师又不可能逐个去算,因此,为解决课堂效率与学生个体差异的矛盾上,我设计制作了一个VB软件,只要相应的输入相关数字,结果就能得出。一个小的细节,让学生体验到现在教育技术的巨大作用,同时又激起学生学习相关信息知识的兴趣。

(三) 概念建构

在体验了以上生活情境的过程之后,那么自然而然引出了本堂课的课题:“求代数式的值”。在这个概念建构上,主要从引导自学,感知认知和师生互动,理解知识相结合,培养学生良好的学习习惯,,提高其独立分析和解决问题的能力,变“学会”为“会学”。

(四) 技能演练

在技能演练上,我主要采用了“演——练——拓——求法”四位一体的循环教学模式,用三个例题,层层深入。

第一个例题是:

(一)求解代数式的值

1、当a分别取下列值时,求代数式3-5a的值

(1)a=2

(2)a=-4

(3)a=

(4)a=

(2)解:

当a=-4时,……当

3-5a ……抄

=3-5×(-4)……代

=7 ……算

例一的设计,主要是用不用的数值求同一个代数式的值,从整数,负数,分数,无理数等,力求涉及到数的领域,并通过教师示范,总结出“当,抄,代,算”口诀,便于学生理解记忆

例二:

在例一学生学会了求单字母代数式的基础上,我给出了例二,是求多个字母的代数式问题。那么从知识的深度上来说,又加深了一步。但是,学生很容易想当将其代入,但是在求法上,教师着重强调格式问题。

例三:

在学会了用单字母以及多字母求解代数式的基础上,我将给出例三。例三实际上是涉及到数学中一个很重要的思想——整体思想。对于七年级学生来说,要解决这类问题还是有点难度的,但是,基础稍微好点的学生会容易做出来,基础差点的在教师以及周围学生的.帮组下,相信也能理解。

那么,以上是三个例题的设计,那么为了巩固学生的训练,我在每道例题后面都相应的设计了配套练习。

尤其,我设计了这样一道练习题:

我们知道,学生的反馈模式多种多样,可以有学生出现问题教师指正等多种形式。那么,我们在这里就是采用了错误教育这样一种反馈模式,让学生在错误教育中对知识有更深的理解。

(五) 小结与作业

(1)阅读作业

(2)书面作业

(3) 弹性作业

作业分为三种形式,体现作业的巩固性和发展性原则。阅读作业中的问题思考是后续课堂的铺垫,而弹性作业不作统一要求,供学有余力的学生课后研究。同时,它也是新课标里研究性学习的一部分。

六、 我的板书设计是:

我就讲到这里,恳请各位专家老师批评指正。谢谢!

最新代数式课件(锦集4篇)


每位教师都必须拥有教案课件,这是不可或缺的。因此,老师需要花时间去撰写。只有教案课件写得好,才能更加自信地进行教学。我们是否担心如何写出好的教案课件呢?今天趣祝福编辑与你分享一篇从网络中筛选出的“代数式课件”文章,务必好好收藏,以便日后阅读。

代数式课件 篇1

一、教材分析

1.教材分析

我选取的是浙教版七上实验教材第四章第二节,课题为《代数式》,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式.从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始.同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义.据此,我确定本节课的教学重点为:代数式的概念及用代数式表示常用的数量关系.

2.学情分析

在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:用代数式表示实际问题中的数量关系.

二、教学目标

根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的.

过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展.

三、教法与学法

根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点.

在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”.

四、课堂结构设计

根据问题解决的一般过程,我把这节课的课堂结构设计为以下5个环节,下面对教学过程设计作详细的说明.

五、教学过程设计

1.创设情境,引出问题

我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题.

如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育.同时,旅程的开始也就意味着学习的开始.

在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:

首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中.到了纪念馆门口,自然遇到了买门票问题.

此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义.

进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决.如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性.教学时应引导学生正确书写,指出书写的简约美.

接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式:略,提出问题:它们与我们以前学过的算式有什么区别呢?

使学生造成认知上的冲突,激发其探究的内驱力.

2.对比析误,感知问题

从而水到渠成地得到概念.教师在板书概念后点出课题.

此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性.

至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理.而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索.首先是列:

3.双向建构,探索问题

(1).大家一起来列式:

列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序.教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验.我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流.

(2).聪明才智共编式

如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点.估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心.可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台.由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的.此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮.

为乘机促使思维进一步发展,让学生跳一跳能摘到桃子,我设计了如下的探究活动.

4.合作交流,解决问题

(1).开动脑筋齐探索

请学生以小组为单位,选取下列的1个主题,先自主探索,再在组内交流.然后通过视频展示台展示研究成果.

主题1是为了培养学生动手操作和规律探索能力,渗透特殊到一般的思想而设置的.估计学生对此题会有不同的解决方法,从而得到不同的代数式,教师要细心聆听学生的讲解,充分肯定小组合作的成果,并点明这些代数式最后都可化为同一形式,为后续内容学习埋下伏笔.

主题2是为了让学生感受数学美,渗透数学人文和数形结合思想,并为勾股定理等后续内容的学习打下基础.

在此把研究性学习引入课堂,是为了给学生思考、探究、发现和创新提供最大的空间.同时通过展示研究成果,师生共同从语言表达、动手操作、参与合作等方面进行评价,使同学们在多元评价中感受自主探究的乐趣.预计这里又能达到一个高潮.

(2)游戏之中验真知

经过前面的两次高潮,估计学生的思维已有些疲劳,根据注意的转移规律,借鉴中央台的非常6+1栏目,我设计了游戏活动-砸金蛋.8个金蛋内设计了5个题目和3朵彩花,其中问题的顺序已作了充分的预设,不管怎么砸,问题都按照先简后难的固定顺序出现,从而使高层次的问题在思维最活跃时得到解决.

此游戏的开展,吸引了学生的有意注意,舒缓了疲劳,起到了课堂调节剂的作用,使学生在愉快活跃的氛围中主动参与知识的巩固、深化过程,仿佛学中玩,玩中学.最后一题的情境设计突出了参观主线,并暗示参观已结束,进入返程.而在乘车返校途中,又自然而然地引出了实际问题:

(3)返程路上解疑问

如此设计,使问题与情境相融,做到首尾呼应,参观情节贯穿整节课.在讲解时可引导学生在观察动画演示的基础上先独自解决,后请学生代表作分析,以暴露思维过程,教师应及时进行鼓励和评价,使学生在问题解决的过程中体会成功的喜悦.其中拓展问题的设计为下节课的学习作了铺垫.

5.反思小结,拓展问题

(1).你说我讲共交流

小结由师生互动完成,我引导学生从以上几方面进行交流.前三方面对应了本节课的三维目标,第四方面的设计能促使学生进行全面反思,使课堂得到延升.

(2).课后延伸促提高

作业分为阅读作业、书面作业和拓展作业,其中根据学生的发展情况,书面作业又分为必做题和选做题,如此设计的目的,是为了使不同的人在数学上得到不同的发展.

板书预设如下,最后从预设和生成两个方面对本案设计作补充说明.

六、设计说明

1.预设

(1).教学特色:本节课的设计是以问题为主线,以“参观”为形式,参观情境贯穿整节课,而实质是数学本质的渗透,抽象的数学学习与有趣的参观情境有机相融,让学生在这个特殊的"旅程"中感受地方人文,体念学习过程,体会思想方法,突出了数学学习的生活化,使学生真正成为课堂的主角.

(2).重、难点的处理:

突出重点措施:

①.通过列式——比较——辨别——概括等环节,让学生经历代数式概念的产生过程,

②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.

突破难点策略:

①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.

②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.

2.生成

预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.

代数式课件 篇2

各位领导老师,下午好!今天我说课的内容是代数式的值。

下面,我将从教材分析、学情分析、教学目标、教法分析、教学过程及说明五个方面对本次课题进行分析。

一、 教材分析:

(一) 教材的地位及作用:

首先,我们来看一下教材的地位及作用。“代数式的值”是浙教版七年级上册4.5节的内容,是初中代数研究的一个重要问题之一。它是学生在学习了用字母表示数之后的后续内容,又可贯穿于初中代数学习的始终。所以,通过这部分内容的学习,可以帮助学生更好的理解代数的核心问题——代数式的概念,也能让学生为将来的函数学习作一个铺垫。

(二) 教学重难点

基于教材的这样一个地位以及作用,那么本堂课的教学重点是求代数式的值的方法,教学难点是理解用字母表示数与求代数式的值的关系。

二、 学情分析

接下来我从知识、能力和情感态度三个方面分析学生的基础、优势和不足。在本堂课之前,学生已经学习了用字母表示数的知识和概念,掌握了会用字母来表示一些实际问题,但是求代数式的值上还会有一定的偏差。但是,学生对数学的学习有相当的兴趣和积极性,愿意与老师、同学进行探讨交流,相信他们一定能在合作交流的意识与数学能力的提高等方面有所发展。

三、 教学目标

在对教材与学生充分了解的基础上,本堂课的教学目标可以分为以下三个:

知识目标:(1)经历具体情境让学生抽象求代数式值的过程,体会用数值代替代数式里的字母,并会求出代数式的值。

(2)通过求代数式的值让学生进一步理解用字母表示数的意义,进一步增强符号感。

(3)通过对实际例题的体验初步了解整体思想

能力目标:通过学习,培养学生分析问题、解决问题、收集处理信息、团结协作的能力。

情感目标:使学生感受从特殊到一般,又从一般到特殊的辨证过程,激发学生学习数学的兴趣,培养学生辨证唯物主义观点。

四、 教法分析

根据以上的分析,本堂课的教学目标实现策略为“三个一”,即创设一个情境;采用一种反馈模式;贯彻一个自主探索的理念。具体来说,本堂课采用引导探究式学习方法,使学生在一个生活情境的引导下,在多媒体课件的辅助下,通过反复技能演练去发现问题,合作探究与独立思考相结合来解决问题的方法。这种教法的设计,不仅重视了知识的结果,更重视知识的发生,发展和解决过程,贯彻新课程的理念。

五、 教学过程

接下来,我将具体讲解教学过程

根据建构主义理论,教学流程分为情境引入——例题讲解,概念建构——技能演练——小结与作业四个环节。

(一)情境引入

首先我们来看情景引入。

在情境引入上,我着重思考的是如何使我们的数学贴近我们的生活,激起同学们学习的兴趣。因此,我挑选了一个同学们感兴趣的话题——身高预测。在课前,我首先让学生了解了父母亲身高的相关信息。在课上,在给出以下一段文字材料后,

“据某报纸报道,一位医生研究得出由父母身高预测子女成年后的身高公式:儿子的身高是父母身高和的一半再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2”

我给出了三个问题:

第一个问题是(1)已知父亲身高是a米,母亲身高是b米,请同学们用代数式表示儿子和女儿的身高

第一个问题的设计,主要是同学们学过的列代数式的知识的一个回顾,同时也让同学初步感受到今天所学的知识是原来知识上的一个深入,学习的台阶就会相对来说低一点。

在解决了第一个问题以后,我给出了第二个问题

(2)七年级女生小红的父亲身高是1.75米,母亲身高是1.62米,七年级男生小良的父亲身高是1.70米,母亲是1.62米,试预测小良和小红成年后的身高

第二个问题的设计,是今天所学的新知识。由于放入了这样一个生活情境,同学们必然会容易得出答案。

那么,在解决了以上两个问题之后,同学们的兴趣进一步提高,必然想对自己的身高预测一下,因为我就设计了第三个问题:请同学们预测自己的身高。

那么,在第三个问题的时候,由于每个学生父母亲身高的差异性,那么教师又不可能逐个去算,因此,为解决课堂效率与学生个体差异的矛盾上,我设计制作了一个VB软件,只要相应的输入相关数字,结果就能得出。一个小的细节,让学生体验到现在教育技术的巨大作用,同时又激起学生学习相关信息知识的兴趣。

(三) 概念建构

在体验了以上生活情境的过程之后,那么自然而然引出了本堂课的课题:“求代数式的值”。在这个概念建构上,主要从引导自学,感知认知和师生互动,理解知识相结合,培养学生良好的学习习惯,,提高其独立分析和解决问题的能力,变“学会”为“会学”。

(四) 技能演练

在技能演练上,我主要采用了“演——练——拓——求法”四位一体的循环教学模式,用三个例题,层层深入。

第一个例题是:

(一)求解代数式的值

1、当a分别取下列值时,求代数式3-5a的值

(1)a=2

(2)a=-4

(3)a=

(4)a=

(2)解:

当a=-4时,……当

3-5a ……抄

=3-5×(-4)……代

=7 ……算

例一的设计,主要是用不用的数值求同一个代数式的值,从整数,负数,分数,无理数等,力求涉及到数的领域,并通过教师示范,总结出“当,抄,代,算”口诀,便于学生理解记忆

例二:

在例一学生学会了求单字母代数式的基础上,我给出了例二,是求多个字母的代数式问题。那么从知识的深度上来说,又加深了一步。但是,学生很容易想当将其代入,但是在求法上,教师着重强调格式问题。

例三:

在学会了用单字母以及多字母求解代数式的基础上,我将给出例三。例三实际上是涉及到数学中一个很重要的思想——整体思想。对于七年级学生来说,要解决这类问题还是有点难度的,但是,基础稍微好点的学生会容易做出来,基础差点的在教师以及周围学生的.帮组下,相信也能理解。

那么,以上是三个例题的设计,那么为了巩固学生的训练,我在每道例题后面都相应的设计了配套练习。

尤其,我设计了这样一道练习题:

我们知道,学生的反馈模式多种多样,可以有学生出现问题教师指正等多种形式。那么,我们在这里就是采用了错误教育这样一种反馈模式,让学生在错误教育中对知识有更深的理解。

(五) 小结与作业

(1)阅读作业

(2)书面作业

(3) 弹性作业

作业分为三种形式,体现作业的巩固性和发展性原则。阅读作业中的问题思考是后续课堂的铺垫,而弹性作业不作统一要求,供学有余力的学生课后研究。同时,它也是新课标里研究性学习的一部分。

六、 我的板书设计是:

我就讲到这里,恳请各位专家老师批评指正。谢谢!

代数式课件 篇3

一、教材分析

(一)、教材内容的地位和作用

《代数式的值》选自义务教育课程标准实验教科书(浙教版)七年级数学(上)第四章,是我个人根据学生的知识基础、认知能力以及思维品质等实际情况而在教学中加以设计的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?

(二)、教学目标

根据新《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:

1. 知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

2. 情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

(三)、教学重点、难点

教学重点:代数式的值的概念。

教学难点:代数式的值的概念,书写格式训练知识的运用。

二、教法、学法分析

本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

三、教学程序设计

教学流程 设计思路与媒体应用分析

(一)回顾以前做过的题目,引入课题

(二)探索交流,获得新知

引导学生回忆回顾以前做过的题目的过程,点出课题并总结代数式的值的概念。由于有了前面的铺垫,立刻就有同学回答。板书课题并投影显示概念。

掌握了代数式的值的概念,

三、例题教学

例1 当n分别取下列值时,求代数式 的值

(1)n=-1; (2)n=4;

(3)n=0.6

例2 已知a=-2. b= 1/3 ,求代数式 2ab-6b2 的值

例3. 已知 ,求代数式 的值。

四、知识实际应用

例4. 如图,用100米的篱笆围成一个有一边靠墙的长方形的饲养场,设饲养场的长为x米,

(1)用代数式表示饲养场的面积_________________。

(2)当x分别为40米,50米,60米时,哪一种围成的面积最大?

x

五、思维拓展

按右下图示的程序计算,若开始输入的n值为3.

则最后输出的结果是______。

六、课堂小结

1. 什么叫代数式的值:用数值代替代数式里的字母,

按照代数式中的运算关系计算得出的结果。

2. 求代数式的值的步骤:

①指出代数式中字母表示的数;

②抄写原来的代数式;

③ 用字母代表的数替换代数式中的字母;

④对所得到的算式进行计算,求出代数式的值.

七、布置作业 究竟如何引入新课呢?如果直接点题引入新课,可能较为平淡,引发不起学生更大的学习兴趣。这或许对生参与这节课学习的积极性略有影响。因此,我在一开始便用回顾以前做过的题目的方式,为引出课题打下伏笔。

从实践的角度下定义,便于学生理解记忆。而对于数学概念的学习,要关注概念的实际背景与形成过程,克服机械记忆的学习方式。

以往我们在课堂教学中都是老师讲解例题然后学生演练,学生往往被动接受,忽略了学生为主体的教育目标。本课改为学生运用新知自主探索,教师协助指引。演练过程中学生往往不会想到代数式中字母取值的不确定性,而在代数式求值过程中忽略强调字母取值的条件,待他们板演后与同学们一起检验,对演练有误的同学提示更正,对正确的同学加以表扬。可充分调动学生的学习积极性。

学生演算完后会很容易就发现答案,这个设计为引出下一题打下伏笔。

由于有前面的铺垫学生很快会回答出答案。

添括号补乘号等是多数同学都有可能忽略的问题,师生共同分析比较后可进一步加强学生对所学知识的感性认识。

这里设置的几个题目,既有来自于数学知识本身,也有跨学科间的联系。通过对问题的解答,进一步巩固了代数式的值的概念,还加强了学生运用数学知识解决实际问题的能力。

自然设问,符合常理,进一步激起了学生探究的欲望。提问时遵循了学生的思维规律,并给予了学生充分的时间,让他们自己去交流,去体会知识的形成过程。

若学生配合较好,可以继续探究,并适当加大难度。这里包括例题共设计了四道题,前三道题既有趣味性,又复习了本节课的内容。第四题是一个动手实验的题目,提供给学有余力的学生,充分体现了分层教学的思想。

总结性提问的问题包括了本节课的学习内容,让学生自己对这节课进行评价,学会反思。

课外作业注重发挥学生的主观能动性,让不同的学生都得到不同的发展。

四、板 书 设 计:

一、代数式的值定义 四、思维拓展

二、例题教学例1 、例2. 例3 五、课堂小结

三、知识实际应用例4 六、布置作业

五、“求代数式的值”一课的设计理念:

本节课我所讲授的内容是“代数式的值”,它是冀教版七年级新教材第五章第4小节的内容,是前一部分用字母表示数及列代数式等知识的完结与提升。为将来学习函数,感受数字与字母之间的关系打下基础。在设计这节课时,我力图落实“创设情境——自主探究——合作交流——巩固深化——反思升华——检测评价的教学流程,初步落实”初中数学课堂教学中以小目标分层推进的策略与研究“来与老师们共同探讨,以便更好的调整自己的课堂教学。

新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

代数式课件 篇4

一、说教材:

代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。

二、说目标:

2.1教学目标

根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:

1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。

2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。

3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。

2.2重难点

代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。

教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

三、说教法:

3.1教法分析

针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的思考机会,便课堂气氛活泼,有新鲜感。

3.2学法分析

“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。

3.3教学手段

采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。

四、说设计:

4.1导入设计

1、创设情境,引入新课(用多媒体展示)

①搭个这样的正方形需要多少根火柴棒?

②每根火柴棒的长为,则一个正方形的周长为,两个正方形的面积为

③一个正方形的面积是个正方形面积的

④一个正方形面积为则它的边长为

先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。

通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。

2、展示新知:

问:这些式子有什么共同特征?

请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。

书写代数式请注意以下几点:

(1)通常写为·或(乘号省略)

(2)通常写作(除号用分数线表示)

(3)数字写在字母的前面。如不写成

3、应用新知

为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。

(1)判别

①不是代数式;

②是代数式;

③是代数式;

④是代数式。

判别的时候要紧扣定义,定义其实由两部分组成:

①用运算符号把数或表示数的字母连结而成的式子叫代数式;

②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。

(2)下列式子中符合代数式书写要求的是()

(3)用代数式表示米与厘米的和的式子:

①厘米②厘米③米④厘米,四个式子中正确的是()

(a)①②(b)③④(c)①③(d)②③

4.4例题教学

例1.用代数式表示:

(1)的3倍与3的差;

(2)的2倍与的的和;

(3)与的和的平方;

(4)与的平方的和;

(5)与两数平方的和;

(6)的立方根。

例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。

例2.一辆汽车以80千米/小时的速度行驶,从a城到b城需小时。如果该车的行驶速度增加v千米/小时,那么从a城到b城需多少时间?

为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:

①这是小学学过的哪类应用题?

②行程问题中的三个主要量的关系如何?

③一辆汽车以80千米/小时的速度行驶,从a城到b城需小时,则a城到b城总路程是多少千米?

④这辆汽车原来的速度为80千米/小时,其速度增加v千米/小时后,该车的速度是多少?

⑤在总路程不变的前提下,那么汽车提速后从a城到b城需多少时间?

在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。

以上题目均由多媒体展示,所有过程均采用学生自由讨论,单独作答的形式。

4.5练习:

1、列代数式:

(1)a、b两数的和与它们的差的乘积;

(2)a、b两数的和与它们的差的商;

(3)a、b两数的平方和减去它们乘积的2倍;

(4)a、b两数的和的平方减去它们的差的平方;

(5)用代数式表示奇数、偶数。

2、填空:

(1)大米的单价为元/千克,食油的单价为元/千克,买10千克大米,2千克食油共需元;

(2)日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,若上述四个时刻气温的摄氏度分别是,则日平均气温的摄氏温度数是;

(3)一个五彩花圃的形状如图,花圃的面积为。

(4)一隧道长米,一列火车长180米,如果该列火车穿过隧道所花的时间为秒,则列车的速度是多少?

进行课堂练习,巩固概念,强化学生对这节课的掌握,根据练习情况,如果错误及时改正。

4.6课堂小结

小结本节课的主要内容,使学生理清这节课的重点内容。

4.7布置作业。

五、说评价:

(1)本节课的教学目标是多元的,涉及知识和能力,过程与方法,情感态度与价值观三方面,体现了“以学生发展为本的教育理念”。

(2)精心设计问题情景,积极引导学生自主讨论,体验过程,获取知识,提高分析问题的能力。

(3)充分利用现代化信息技术,提高课堂效果,活泼学生学习兴趣和学习积极性,使教与学在和谐、愉悦的氛围中进行。

等式课件9篇


身为经验丰富的编辑,我特别推荐这篇经典的“等式课件”。在正式上课前,老师需要提前准备好本学期的教学教案课件,现在开始着手准备也不算晚。教案是成为一位优秀教师所必备的条件。我们提供的建议仅供参考,您可以根据自己的需求进行调整!

等式课件 篇1

1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1

1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )

A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2

A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0

A. a>0¬ B.a≥0¬ C.a

11、若关于x的不等式组 的解集是x>2a,则a的取值范围是

A. a>4 B. a>2 C. a=2 D.a≥2

12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是

13、不等式2(1) x>-3的解集是 。

14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。

15、若(m-3)x-1,则m .

18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛

1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。

2、心对称的两条基本性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。

这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和感想。

成也审题败也审题。如何审题呢?

(1)这个题目有哪些个已知条件?我能不能把已知条件分开?

(2)求解的目标是什么?对求解有什么要求?

(3)能不能画一个图帮助思考?好多问题是没有看清楚题意致错。审题不清,你做得越多,可能错的就越多。

(4)所给出的已知条件相互之间有什么关系?能不能从中发现隐含条件?

(5)已知条件与求解目标有什么联系?能不能从中获得解题的思路?找到进门的门槛?

等式课件 篇2

今天我要为大家讲的课题是等式的性质。

首先,我对本节教材进行一些分析:

一、教材分析(说教材):

1、教材所处的地位和作用:在掌握了一元一次方程的概念及其初步应用后,需要解决的是一元一次方程的解法,本节的内容是《你今年几岁了》第二课时,借助于等式的性质来解一元一次方程。为下几节的学习铺平道路.首先通过天平的实验操作,使学生学会观察、尝试分析、归纳等式的性质。然后,利用等式的基本性质解一元一次方程。通过解方程的学习提高了学生观察问题、解决问题的能力.

2、教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

a、知识目标:

(1)通过天平实验让学生探索等式具有的性质并予以归纳。

(2)能利用等式的性质解一元一次方程。

b、能力目标:通过实验培养学生探索能力、观察能力、归纳能力和应用新知的能力。

c、 情感目标:通过实验操作增强合作交流的意识。

3、重点:利用等式的性质解方程。

4、难点:对等式的性质的理解及应用。

下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

二:教学策略(说教法):

㈠教学手段:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法

2:图表分析法

3:读图讨论法

4:教学过程中坚持启发式教学的原则

㈡教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据初二学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式数学教学法,师生交谈法、图像信号法、问答法、数学课堂讨论法,引导学生根据现实生活的经历和体验及收集到的数学信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的数学知识和技能,增强学生的生存能力,使所学的内容不仅对学生现在的生活和学习有用,而且对他们的终身学习和发展有用。在教学中要积极培养学生数学学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

三:学情分析:(说学法)

1 、学生特点分析:

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业等五个部分。

(二):教学简要过程:

1:复习提问:

2:导入讲授新课:

3:课堂练习:

4:新课巩固:

5:作业布置;

等式课件 篇3

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1. 感受生活中存在的不等关系,了解不等式的意义。

2. 掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

重点:不等式概念及其基本性质

难点:不等式基本性质3

教法与学法:

1. 教学理念: “ 人人学有用的数学”

2. 教学方法:观察法、引导发现法、讨论法.

3. 教学手段:多媒体应用教学

4. 学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课

引例列出了数与数之间的不等关系和含有未知量120

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3) a与b的和小于5;

(4) x与2的差大于-1;

(5) x的4倍不大于7;

(6) 的一半不小于3

关键词:非负数,非正数,不大于,不小于,不超过,至少

回到引入课题时的门票问题120

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果a>b,那么

(1) a-3 b-3 (2) 2a 2b (3) -3a -3b

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系

三、拓展训练

根据不等式基本性质,将下列不等式化为“”的形式

(1)x-13

[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想

方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,

让学生在合作交流中完成任务,体会合作学习的乐趣。]

问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)

[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]

3、尝试练习,应用新知

小黑板出示下列练习

一:孙悟空火眼金睛:

1、如果x+5>4,那么两边都可得x>-1

2、在-7<8的两边都加上9可得。

3、在5>-2的两边都减去6可得。

4、在-3>-4的两边都乘以7可得。

5、在-8<0的两边都除以8可得

二:你来决策:

如果a>b,那么

1、a-3 b-3(不等式性质)

2、2a 2b(不等式性质)

3、-3a -3b(不等式性质)

4、a-b 0(不等式性质)

[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]

出示例题

例1根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

(1)x-5>-1(2)-2 x>3

(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)

解(1)根据不等式的性质1,两边都加上5得:

x-5+5>-1+5

即x>4

(2)根据不等式的性质3,两边都除以-2得:

即x<-3/2

练习:根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

(1)3x>5(4)-4 x<3-x

[设计意图:由于新教材中例题较少,学生对于书写格式了解太少,因此教师应该加以规范。]

4、总结反思,获得升华

让学生从知识方面、能力方面、思想方面进行总结。鼓励学生畅所欲言总结对本节课的收获与体会。

[设计意图:让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。]

5、布置作业,深化巩固

必做作业:习题11.2第二题推荐作业:课本中的试一试。

[设计意图:这样做的目的在于,让不同层次的学生都有不同程度的提高。]

七、板书设计:

为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。本着板书的科学性,条理性原则,设计板书如下:

11.2不等式的基本性质 不等式的基本性质 1:如果ab,那么a+c>b+c,a-c>b-c(2)-2 x>3 2:如果a>b,c>0,那么ac>bc 如果a0,那么acb,cbc例:(1)x-5>-1>

等式课件 篇4

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、

现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的'概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、

2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、

利用多媒体直观演示课前引入问题,激发学生的学习兴趣、

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、

问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果、

最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

等式课件 篇5

教学内容

教科书第6页的7~12题

教学目标

1、通过练习,使学生进一步体会方程的含义。

2、进一步理解等式的性质,能根据等式的性质正确地解方程。

重点:

使学生在学生与探索的过程中进一步培养独立思考、主动与他人合作交流、自动检验等习惯,并获得成功的体验,树立进一步学好数学的信心。

难点:

培养学生独立思考、主动与他人合作交流、自动检验等习惯。

流程

教师、学生活动

设计意图

基础

练习

一、基础练习

1、说出下面的式子哪些是方程,哪些不是,为什么?

20+17=3712-Y=4a+12=35

21-b<14x=14+2316+a=27+b

2、解方程

X+125=370520+X=710X-4.9=6.4

120-X=257.8+X=2.5X+8.5=12

学生独立完成,指名学生板演。

学生独立完成,集体订正,帮有错的同学分析错误原因,使其明白。学生板演。

练习

第7题

学生独立完成后指名回答,让学生说说是怎样想的。

使学生明白:根据等式的性质是含有未知数的一边只剩下未知数,就能很快知道最后的结果。

引导学生列方程解决简单实际问题,既有利于学生进一步巩固列方程解决实际问题的方法,又能拓宽学生的知识视野。

第9题

先由学生独立完成。

指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我

们在做题时要注意一些什么?

第8题

学生独立完成,指名板演。

教师要特别关注前面解题还有错的学生,争取人人过关。

集体订正,分析错误原因。

让学生自己找出错误,再通过交流弄清错误的原因。

第12题

学生读题后独立思考解决问题的方法。

小组内交流。

全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

引导学生用画图或列表的方法表示出题目的条件和问题,再启发学生利用等式的性质进行思考。

课堂

作业

第6页的第10、11题。

利于激发学生的学习兴趣。培养环保意识。

等式课件 篇6

(一)复习提问:

三角形的三边关系?

(二)列一元一次不等式组

问题:现有两根木条a和b,a长10cm,b长3cm.如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

注:这个问题是本节的'引入问题,三角形木框的形状不唯一确定,只要能成为三角形即可.

探究:用三根长度分别为14cm,9cm,6cm的木条c1,c2,c3分别试试,其中哪根木条能与木条a和b一起钉成三角形木框?

可以发现,当木条a和b的长度确定后,木条c太长或太短,都不能与a和b一起钉成三角形.

由于“三角形中两边之和大于第三边,两边之差小于第三边”,设木条c长xcm,则x必须同时满足不等式x10+3①和x10-3②

注:木条c必须同时满足两个条件,即ca+b,ca-b.

类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组记作注:这里并未正式给一元一次不等式组下定义,只是说这两个不等式合起来,组成一个一元一次不等式组.实际上,两个或更多的一元一次不等式组合起来,都组成一个一元一次不等式组.

(三)一元一次不等式组的解集

类比方程组的解,怎样确定不等式组中x的可取值的范围呢?

不等式组中的各不等式解集的公共部分,就是不等式组中x可以取值的范围.

注:这里还未正式出现不等式组的解集的概念,但已点出各不等式的解集的公共部分即不等式组中未知数的可取值范围.

由不等式①解得x13.

由不等式②解得x7.

从图9.3—2容易看出,x可以取值的范围为713.

注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.

这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.

注:这里正式给出不等式组的解集以及解不等式组的定义13.注:利用数轴可以直观形象地认识公共部分.这个公共部分是两端有界的开区间.这就是说,当木条c比7cm长并且比13cm短时,它能与木条a和b一起钉成三角形木框.一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.注:这里正式给出不等式组的解集以及解不等式组的定义。

等式课件 篇7

初中的数学内容较小学教学内容更系统和深入,涉及面更广。因此,教师在教学中应该注重基础知识的教学,帮助学生打下厚实的基础,以利于学生以后的数学学习。首先应该摆正师生关系,在中国的教育当中一直强调着“师道尊严”。教师在课堂上一般都是居高而上,普遍都是教师在讲台上讲,学生在下面埋头“消化”教师讲的知识点。教师掌握着上课的节奏,这样学生显得很被动。在初中不等式教学当中涉及很多的知识点,学生仅仅知道一些公式而不会运用是教学的一种失败。基础知识在教学当中就显得尤为重要。

不等式的解题方式多样,内容丰富,技巧性较强并且要依据题设、题的结构特点、内在联系、选择适当的解题方法,就要熟悉解题中的推理思维,需要掌握相应的步骤、技巧和语言特点。而这一切都是建立在学生有夯实的基础之上的。学生的基础知识不扎实的话,在解不等式题时就步履维艰。 夯实的基础来源于学生对不等式概念知识的掌握和运用,而概念的形成有一个从具体到表象再到抽象的过程。对不等式抽象概念的教学,更要关注概念的实际背景和学生对概念的掌握程度。数学的概念也是数学命题、数学推理的基础,学生学习不等式知识点也是从概念的学习开始的。所以在不等式教学探究中教师应注重学生的基础。

提高初中数学不等式教学效果,首先要培养学生主动探索数学知识的精神,通过寻求不同思维达到解题效果来激发学生对数学学习的兴趣。引导学生主动去对数学不等式知识进行探究,通过结合所学的数学知识来形成一个完整的知识网络,以帮助学生完成更深入地数学知识探究。

同时初中数学不等式知识点的学习对学生归纳能力提出了较高的要求。灵活使用概念能够帮助学生熟练地运用数学知识,对不等式这一章节知识点的掌握归纳和整理进行综合的运用从而能够成功地解题。例如,在含有绝对值的不等式当中:解关于x的不等式2+a0时,解集是;(2)当-2≤a

要把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,掌握解决问题的技能,并形成自主学习的能力。创设促进自主学习的问题情境,首先教师要精心设计问题,鼓励学生质疑,培养学生善于观察、认真分析、发现问题的能力。其次,要积极开展合作探讨,交流得出很多结论。当学生所得的结论不够全面时,可以给学生留下课后再思考、讨论的余地,这样就有利于激发学生探索的动机,培养他们自主动脑、力求创新的能力。如在讲解等比数列的通项公式时,采取实例设疑导入法。通过创设一个问题情境,就把复杂、抽象而又枯燥的问题简单化、具体化、通俗化,同时也趣味化,提高了学生学习数学的兴趣。合作学习为学生的全面发展,特别是学生个体的社会化发展创造了适宜的环境和条件。

教学实践中,我们注意到:在很多情况下,正是由于问题或困难的存在才使得合作学习显得更为必要,每节新课前教师应要求学生依据导学提纲预习本节内容,要求将学生在预习中遇到的问题记录在笔记本的主要区域,课前预习中不能解决的问题课堂中解决,课堂中未弄明白的问题课后解决,个人无法解决的问题小组解决,小组无法解决的问题请教老师,实现真正的“兵教兵,兵练兵,兵强兵”,没有问题就寻找问题,鼓励引导学生在同桌、临桌之间相互探讨,让学生在课堂上有足够的时间体验问题的解决过程,更多地鼓励学生独立审题、合作探讨,把问题分析留给自己。这种做法的出发点就是避免学生对教师的过分依赖,当然,他们归纳基本步骤和要点遇到困难时,教师应施以援手。

学校最重要、最基本的人际关系是教学过程中教师和学生的关系,教师要善待每一名学生,做他们关怀体贴、博学多才的朋友,做他们心灵智慧的双重引路人。“亲其师而信其道”“厌其师而弃其道”,平等、尊重、倾听、感染、善待理解每一名学生,这是为师的底线和基本原则,而高素质、时代感强,具有创新精神的教师,正逐渐成为学生欣赏崇拜的对象。

现在,学生正从“学会”变为“会学”,教师正从“讲”师变为“导师”,课堂中新型的师生关系正逐步形成。总而言之,为了在课堂上达到师生互动的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠并不断更新;教学技巧是手段,必须生动活泼、直观形象,师生互动是平台,必须师生双方融洽和谐、平等对话。

在农村中学,很多学生都是留守儿童,父母常年在外打工,很多学生缺少关爱,特别是情感方面的.这时,作为教师,就应该拿出我们的爱心,去关心和帮助这些学生,这时学生和你亲近了,对你所教的科目也就产生了兴趣,成绩自然而然就上去了.如果你对学生不闻不问的,甚至还去打击,那么这些学生肯定就会对你抱有成见,久而久之,学习兴趣全无,成绩就会大幅度下降.

如果我们教师照搬课文来进行教学,那么相对来说肯定是枯燥的,无趣的,学生学起来就会感觉无味,自然就提不起学习数学的兴趣.所以我们教师要将课本的知识尽量转化为有趣的问题或者活动来进行教学.比如,在研究“视图”时,可引入游戏.在讲台上放一个物体,然后将学生分为几个组,并让这几个组从不同的方位去观察它,并将自己看到的几何图形画出来.这样不仅使学生学到了数学知识,也锻炼了学生的动手能力和合作能力.

初中生都是一帮15岁左右的小孩,在这个年龄段,学生的好奇心是很强的,对很多事物都会很感兴趣.所以针对这一特殊心理特征,我们教师可以大胆地创设一些使学生产生强烈好奇心的实际问题,从而更好地提高学生的兴趣.例如,在讲解乘方的时候,可让学生讨论:给你一张足够大的纸,对折六十次后有多高?学生讨论后,教师再告诉他们结果,这时学生会觉得非常好奇、非常惊讶(因为他们想不到会有教师说的那么高),这样学生对学习乘方就产生了很大的兴趣.

教师创设的问题情境都应具备目的性、新异性和适度的障碍性,从而激发学生强烈的求知欲,保持学生自主探究的热情,发挥学生的创造潜能,取得最佳的教学效果。兴趣是最好的老师,是创新的源泉、思维的动力,也是产生学习动机的主观原因。从心理学上来说,兴趣可以使感官和大脑处于最活跃的状态,引起学习中高度注意,使感知清晰,想象活跃.记忆牢固,能抑制疲劳,产生愉快情绪,能以最佳心态获取信息。学生一旦有了用数学解决问题的兴趣,就会积极地去实践,这对思维能力的培养非常重要。

小学生每接触一种新生事物,都有一定的好奇心,教师应抓住学生的心理特征,适当引导,就会激起学生的求知欲,使学生产生一定的兴趣。比如:在教学《角的初步认识》时,用校园环境情景图来激发学生的学习兴趣,学生纷纷投入了角的认识这一知识的学习之中,他们绘声绘色地描述了角,对角有了深刻的认识。之后,我又把枯燥的数学习题编成一个个故事,把学生带入快乐的情境中,学习兴趣一下子被调动起来,他们积极参与学习,探索角的有关知识,进一步理解了角的含义,这样不但引发了学生的思维,而且还增加了记忆能力。

习题,看似平常的知识,殊不知在习题中隐含着扩展数学功能的作用。在解答习题时,学生各方面的能力都会得以形成,思维的独立性和创造性也得到发展。首先利用一题多解培养学生发散思维,教学实践告诉我们,学生的创新思维能打破习惯程序而赋予开拓意识。因此,在处理教材习题时,应引导、鼓励学生大胆质疑,进行联想,使思维更加活跃。例如:在教学六年级下册圆柱表面积计算时便遇到了这样一道习题“有一个由圆柱体和长方体组成的路灯座,长方体长12厘米、宽16厘米、高12厘米。圆柱底面直径是12厘米、高55厘米。

要将这个路灯座漆上白色的油漆,要漆多少平方米?(上面是长方体,下面是圆柱体)”在引导学生弄明白题意后,便让他们独立思考。学生感到很难,便向我摇头示意。这时,我便把事先准备好的长方体和圆柱体发给学生,让他们摆一摆,看看有什么发现,学生们通过动手操作,找到了解题办法。可是,这些解题方法对于中下等的学生理解起来还是困难重重。针对这种现象,我又提示大家,能不能找到什么规律?学生们再次进行研究性学习,经过讨论,他们把这道题的解法列成了公式型,即:路灯座的表面积=长方体的表面积+圆柱的侧面积-圆柱的底面积。看来,一道题中蕴藏着多种解题方法,在教学中教师要善于引导和鼓励学生多动脑筋,发散自己的思维,找到解题的办法,给思维插上翅膀,使学习效率倍增。

等式课件 篇8

一、说教材分析

地位和作用:

教材从对于比较复杂的方程难以用估算求解切入,引出对等式性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法进行铺垫。学生探究等式的性质过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。

教学目标:

(1)知识与能力:理解并能用语言表述等式的性质,能用等式的性质解决问题。

(2)过程与方法:通过观察实验培养学生探索能力、观察能力、概括能力和应用新知的能力,渗透“化归”的思想。

(3)情感与态度:通过实验操作增强师生合作交流的意识。

教学重点:

引导学生探索发现等式的性质,利用等式的性质解决简单问题。

教学难点:

抽象归纳出等式的性质。

教学准备:

天平、导学案及多媒体课件

二、说教学策略与方法分析

有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式,这也是生本课堂“三学小组”教学模式积极倡导的重要学习方式。在本节课的教学中,我利用学生动手操作、多媒体展示,通过观察法、实验法、合作交流、归纳法等教学方法,引导学生预学——互学——评学,遵循由浅入深,由具体到抽象的规律,努力为学生营造一个宽松、民主、和谐的学习环境,让学生们在探索、交流中理解和运用等式的基本性质;

三、说教学流程及设计意图

(一)独立自学

预学:请同学们认真看教材81页第一、二两段内容,结合所学知识回答下列问题;

1、我们把的等式叫方程;用“ ”表示关系的式子叫做等式,可以用表示一般的等式;请举几个等式的例子;

2、能说出方程4x=24,x+1=3的解吗?试一试;

3、79页例1第(2)题我们所列的方程是:能估算出这道方程的解,从而解答这个问题吗?

设计意图:1、2两个问题都来源于教材,比较简单,学生容易解决。第3个问题让学生会感到解决起来有一定的困难,学生对后面即将学习的知识必然引起重视,同时也产生了学好新知再来解决困难的浓厚兴趣,就此引入本节课的课题;

(二)合作互学

动手操作,探究规律:把手中的天平调到平衡状态,在天平两端放置不同的物品,什么时候天平可以平衡?(平衡状态下的天平可以用等式表示)如果在平衡的天平的左端放入一个砝码,天平还平衡吗?怎样做天平才能平衡呢?如果把放入左边的砝码拿掉,又有什么发现呢?

1、通过观察,可以发现什么规律?

规律:

2、归纳:

等式的性质1

用数学符号语言表示为:

能举例验证吗?(可举具体数字的例子验证)

【继续探究】:如果在平衡的天平的左端放入与左端一样的砝码若干个,怎样才能使天平平衡呢?如果把放入天平左端的砝码拿掉,又有什么发现呢?

1、发现的规律是:

2、类比等式的性质1,可以归纳:

等式的性质2

用数学符号语言表示为:

能举例验证吗?(可举具体数字的例子验证)

3、【知识延伸】等式除了以上两条性质外,还有其他的一些性质。

(1)对称性:等式的左、右两边交换位置,所得的结果仍是等式。即如果a=b, a=b那么b=a 。

(2)传递性:如果a=b,且b=c,那么a=c。

设计意图:我设计了探究天平平衡规律实验的教学环节,让学生以小组合作的形式讨论实验步骤并动手操作,在增减重物的过程中认识、归纳天平的平衡规律,让学生汇报实验步骤与结论,并用数字等式的形式表现实验结果,进而共同归纳出等式的性质1.在探究等式的性质2时,我为了加深学生印象,同时也为了培养学生数学思维的发展,提出问题:如果将性质1中的“加”改为“乘”、“减”改为“除以”,结果还会相等吗?让学生大胆猜想,并通过天平实验和数字等式实例变形进行验证,再得出等式的性质2.按照这样的设计,学生必然会充分地参与到探究等式性质的活动中来,既培养了学生团结协作、动手操作、勇于实践的探索精神,又增强了设计实验、类比猜想、归纳建模的学习能力,同时获得的知识也必然印象更深。

(三)展示竞学

1、若X=Y,则下列等式是否成立,若成立,请指明依据等式的哪条性质?若不成立,请说明理由?

(1)X+ 5=Y+ 5(2)X-= Y-

2、如果3x=2x+5,那么3x+______=5;根据等式性质

变式1、如果a-3=b-2,那么a+1=_________;根据等式性质

变式2、从3x+2=3y+2中,能不能得到x=y,依据是什么?

设计意图:这几道练习题主要是等式两条性质的基本运用,练习题的设计我遵循了“低起点,小台阶,循序渐进”的要求,符合七年级学生接受知识的年龄特点,培养了学生运用所学新知解决问题的习惯,使学生能享受到运用新知可以解决新的数学问题的愉悦感。

(四)精讲导学

精讲例题:阅读理解题:下面是小明将等式3x-2=2x-2变形的过程。

设计意图:通过精讲展示竞学部分学生可能有疑惑或解决不了的问题,让学生加深理解等式两条性质运用的条件,设计的变式训练由易到难,目的是巩固基础、提高能力;另外还有一个阅读理解题,目的是让学生在发现错误,并纠正错误的过程中,可以提醒自己在运用时不要犯这样的错误,并加深对等式的两条性质的理解;

(五)小结评学

设计意图:我设计了两个问题:一是你在本节课上有哪些收获?二是你还有哪些疑惑?主要是鼓励学生能畅所欲言,使知识得到深化,能力得到提高;同时通过对学生个人的评价和学习小组的评价,有利于培养学生上课认真听讲,积极思考回答问题,以及荣誉感意识,增强学习数学的自信心;

最后,关注学生的学习体会和感受,提出:通过本节课你学到了什么?

(六)检测固学

1、下列等式的变形中,不正确的是()。

A.若x=y,则x+5=y+5

B.若(a≠0),则x=y

C.若-3x=-3y,则x=y

D.若mx=my,则x=y

2、若,则a=___;若(c2+1)x=2(c2+1),则x=____。

3、填空,使所得结果仍是等式,并说明结果是根据等式的哪一条性质及如何变形得到的?

(1)若2x-4=5,则2x=5+,根据等式的性质

(2)若4x=3x-6,则4x+ =-6,根据等式的性质

(3)如果x=5,那么x=________;根据等式性质

(4)如果0.5m=2n,那么n=_______;根据等式性质

(5)如果-2x=6,那么x=________.根据等式性质

4、若b=3a+6,c=3,且b=c求a的值;

变式:若b=3a+6, c=a,且b=c求a的值;

设计意图:

通过典型,多样化的练习题,尤其是“变式练习”进一步强化技能,提高能力,加深对等式的两条性质的理解和运用;

等式课件 篇9

数学教案-不等式的证明(二)

第二课时

教学目标

1.进一步熟练掌握比较法证明不等式;

2.了解作商比较法证明不等式;

3.提高学生解题时应变能力.

教学重点  比较法的应用

教学难点  常见解题技巧

教学方法  启发引导式

教学活动

(一)导入新课

(教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评.

(学生活动)思考问题,回答.

[字幕]1.比较法证明不等式的步骤是怎样的?

2.比较法证明不等式的步骤中,依据、手段、目的各是什么?

3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗?

[点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题)

设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容.

(二)新课讲授

【尝试探索,建立新知】

(教师活动)提出问题,引导学生研究解决问题,并点评.

(学生活动)尝试解决问题.

[问题]

1.化简 

2.比较  与  (  )的大小.

(学生解答问题)

 [点评]

①问题1,我们采用了因式分解的方法进行简化.

②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小.

设计意图:启发学生研究问题,建立新知,形成新的知识体系.

【例题示范,学会应用】

(教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程.

(学生活动)分析,研究问题.

[字幕]例题3  已知a,b是正数,且  ,求证

 

 [分析]依题目特点,作差后重新组项,采用因式分解来变形.

证明:(见课本)

[点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.

 

[点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.

[字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,问甲、乙两人谁先到达指定地点.

[分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为 ,要回答题目中的问题,只要比较  、的大小就可以了.

解:(见课本)

[点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.

设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.

【课堂练习】

(教师活动)教师打出字幕(练习),要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.

(学生活动)在笔记本上完成练习,甲、乙两位同学板演.

[字幕]练习:1.设  ,比较  与  的大小.

2.已知   ,求证 

设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.

【分析归纳、小结解法】

(教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.

(学生活动)与教师一道小结,并记录在笔记本上.

1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.

2.对差式变形的常用方法有:配方法,通分法,因式分解法等.

3.会用分类讨论的方法确定差式的符号.

4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.

设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.

(三)小结

(教师活动)教师小结本节课所学的知识及数学思想与方法.

    (学生活动)与教师一道小结,并记录笔记.

本节课学习了对差式变形的一种常用方法——因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题.

通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.

设计意图:培养学生对所学的知识进行概括归纳的`能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学思想方法.

(四)布置作业

1.课本作业:P17   7、8。

2,思考题:已知  ,求证 

3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)

设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.

(五)课后点评

1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.

2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用



本文的网址是http://www.zfw152.com/a/5758429.html