趣祝福logo
地图 > 祝福语 > 范文大全 > 七年级上册数学课件 >

2024七年级上册数学课件精华5篇

2024七年级上册数学课件精华5篇

我们编辑了“七年级上册数学课件”以更好地为您提供服务,感谢你的阅读希望这里的内容能给你一些启示。教案课件是老师上课中很重要的一个课件,因此教案课件不是随便写写就可以的。 教师关注教案和课件的设计和使用,把握教学方向。此外,您还可以浏览范文大全栏目的乡镇扶贫工作计划17篇

七年级上册数学课件 篇1

教学目标

1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

重点、难点

重点:探索并理解平移的性质.

难点:对平移的认识和性质的探索.

教学过程

一、引入新课

1.教师打开幻灯机,投放课本图5.4-1的图案.

2.学生观察这些图案、思考并回答问题.

(1)它们有什么共同的特点?

(2)能否根据其中的一部分绘制出整个图案?

3.师生交流.

(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的'正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.

《5.4平移》同步讲义练习和同步练习

1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为 .

2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为 cm2.

3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是 .

《5.4平移》同步测试卷含答案

1. 将图形平移,下列结论错误的是( )

A.对应线段相等

B.对应角相等

C.对应点所连的线段互相平分

D.对应点所连的线段相等

解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.

12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

A.轴对称 B.平移 C.旋转 D.平移和旋转

解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.

七年级上册数学课件 篇2

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1、在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

2、让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1、教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2、只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

3、知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1、这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2、进行演示讲解。

(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

(2)继续演示,谁知道除了通分,还可以怎么算?

根据学生回答,板书。

(3)演示:那么计算就可以得到?()。

3、看到这儿,你发现什么规律了吗?

4、小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

5、这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

6、尝试练习

【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

(三)知识提升,探索发现

1、感受极限。

(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

(3)想象一下,如果我们在刚才加的.过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的。得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

2、利用线段图直观感受相加之和等于“1”。

(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

(2)学生看书思考。

(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

3、课堂小结。

对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

4、举一反三。

其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

【设计意图】让学生体会“数形结合”是数学学习中常用的方法。

三、练习巩固

1、基础练习。

(1)学生独立计算。

(2)全班交流反馈。

【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。

2、小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?

解决问题

(1)全班读题,学生独立思考。

(2)指名回答。

(3)根据学生回答情况,连线(课件演示)。

(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。

【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。

四、课堂总结

快下课了,请你来说说这节课有什么收获?

课后反思:

图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。

七年级上册数学课件 篇3

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

一元二次方程及其二次项系数、一次项系数和常数项的识别.

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

根据题意列方程.

1.教材第2页 问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页 问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

例1 在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2 教材第3页 例题.

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页 练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

七年级上册数学课件 篇4

教学目标:

1、引导同学们领略数学隐藏在生活中的迷人之处;

2、培养同学们对数学的兴趣。

教学内容:

生活中的数学。

教学方法:

启发探索、小游戏

教具安排:

多媒体、剪纸、小剪刀三把

教学过程:

师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗?

学生讨论。

师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:

请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示)

[1]首先,随意挑一个数字(0、1、2、3、4、5、6、7)

[2]把这个数字乘上2

[3]然后加上5

[4]再乘以50

[5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758

[6]最后一个步骤,用这个数目减去你出生的那一年(公元的)

师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸,如图所示:

网路图

居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不

重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。

学生思考设计。

师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。

1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥,如图:

B

现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。

学生思考。

师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?

其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。

他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个

奇结点开始,到另一个奇结点结束。

师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。

现在请同学们自己在练习本上解决这个问题:(PPT演示)

下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?

学生思考讨论。

师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。

那如果农场主将门的形状做成这样呢?(PPT演示)

学生尝试。

师:是不是可以啦,为什么呢?

生:奇结点个数为2.

师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像

某些时候想的那样没什么用处了吧?

下面我们继续我们的奥秘之类吧。

今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。

其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。

为什么呢?这里我们用到三角形等高等底面积相等的性质。

吃完了蛋糕,我们来观赏一下百合花。(PPT演示):

一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?

学生讨论。

师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!

其实,除了以上我们看到的一些有趣的数学影子外,我们的日常生

七年级上册数学课件 篇5

【知识与技能】

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.

2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.

【过程与方法】

通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.

【情感态度】

通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.

【教学重点】

理解算术平方根的概念.

【教学难点】

根据算术平方根的概念正确求出非负数的算术平方根.

一、情境导入,初步认识

教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.

问题1求出下列各数的平方.

1,0,(-1),-1/3,3,1/2.

问题2下列各数分别是某实数的平方,请求出某实数.

25,0,4,4/25,1/144,-1/4,1.69.

对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.

由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.

22=4,(-2) =4,故平方为4的数为2或-2.

问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的.正方形画布画一幅画,这块画布的边长应取多少?

分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.

《6.1.2平方根》课堂练习题

2.(绵阳中考)±2是4的(A)

A.平方根B.相反数

C.绝对值D.算术平方根

3.下面说法中不正确的是(D)

A.6是36的平方根B.-6是36的平方根

C.36的平方根是±6 D.36的平方根是6

4.下列说法正确的是(D)

A.任何非负数都有两个平方根

B.一个正数的平方根仍然是正数

C.只有正数才有平方根

D.负数没有平方根

《6.1平方根》课时练习含答案

15.下面说法正确的是( )

A.4是2的平方根

B.2是4的算术平方根

C.0的算术平方根不存在

D.-1的平方的算术平方根是-1

答案:B

知识点:平方根;算术平方根

解析:

解答:A、4不是2的平方根,故本选项错误;

B、2是4的算术平方根,故本选项正确;

C、0的算术平方根是0,故本选项错误;

D、-1的平方为1,1的算术平方根为1,故本选项错误.

故选B.

分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.


本文的网址是http://www.zfw152.com/a/5861667.html